Three-dimensional stable matching with hybrid preferences

被引:0
作者
Feng Zhang
Jing Li
Junxiang Fan
Huili Shen
Jian Shen
Hua Yu
机构
[1] Shanghai Polytechnic University,Shanghai General Hospital, School of Medicine
[2] Shanghai Jiaotong University,undefined
来源
Journal of Combinatorial Optimization | 2019年 / 37卷
关键词
Three-dimensional stable matching; Hybrid preference; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the problem of stable matching with hybrid preferences among the three agent sets U, V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1$$\end{document} and V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_2$$\end{document}. We consider two hybrid preferences. One is that the agents of set U has a strict preference to the agents of set V1×V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1 \times V_2$$\end{document}, and the agents of set V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1$$\end{document} and V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_2$$\end{document} have a strict preference to the agents of set U respectively. The other is that the agents of set U has a strict preference to the agents of set V1×V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1 \times V_2$$\end{document}, and the agents of set V1×V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1 \times V_2$$\end{document} has a strict preference to the agents of set U.
引用
收藏
页码:330 / 336
页数:6
相关论文
共 50 条
  • [11] A Hybrid Method for Three-Dimensional Semi-Linear Elliptic Equations
    Huang, Jianguo
    Ma, Shengbiao
    Wang, Haoqin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (02) : 420 - 434
  • [12] Phase-matching method based on optimization function for three-dimensional fringe projection
    Liu, Kun
    Yao, Jun
    Zhou, Yihao
    Sun, Chen
    Chen, Jubing
    OPTICAL ENGINEERING, 2018, 57 (10)
  • [13] Three-Dimensional Array SAR Sparse Imaging Based on Hybrid Regularization
    Gao, Jing
    Wang, Yangyang
    Yao, Jinjie
    Zhan, Xu
    Sun, Guohao
    Bai, Jiansheng
    IEEE SENSORS JOURNAL, 2024, 24 (10) : 16699 - 16709
  • [14] Three-sided matching problem with mixed preferences
    Zhang, Feng
    Zhong, Liwei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 42 (04) : 928 - 936
  • [15] Three-sided matching problem with mixed preferences
    Feng Zhang
    Liwei Zhong
    Journal of Combinatorial Optimization, 2021, 42 : 928 - 936
  • [16] A Hybrid Framework for High-Performance Modeling of Three-Dimensional Pipe Networks
    Wang, Shaohua
    Sun, Yeran
    Sun, Yinle
    Guan, Yong
    Feng, Zhenhua
    Lu, Hao
    Cai, Wenwen
    Long, Liang
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (10)
  • [17] A hybrid matheuristic approach for the vehicle routing problem with three-dimensional loading constraints
    Acosta Rodriguez, Diego Alejandro
    Alvarez Martinez, David
    Willmer Escobar, John
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING COMPUTATIONS, 2022, 13 (03) : 421 - 434
  • [18] A Three-Dimensional Unconditionally Stable Five-Step LOD-FDTD Method
    Saxena, Alok Kumar
    Srivastava, Kumar Vaibhav
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (03) : 1321 - 1329
  • [19] Numerical Dispersion Analysis of the Unconditionally Stable Three-Dimensional LOD-FDTD Method
    Ahmed, Iftikhar
    Chua, Eng-Kee
    Li, Er-Ping
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (12) : 3983 - 3989
  • [20] A hybrid method for reconstruction of three-dimensional heterogeneous porous media from two-dimensional images
    Ji, Lili
    Lin, Mian
    Jiang, Wenbin
    Cao, Gaohui
    JOURNAL OF ASIAN EARTH SCIENCES, 2019, 178 : 193 - 203