Three-dimensional stable matching with hybrid preferences

被引:0
|
作者
Feng Zhang
Jing Li
Junxiang Fan
Huili Shen
Jian Shen
Hua Yu
机构
[1] Shanghai Polytechnic University,Shanghai General Hospital, School of Medicine
[2] Shanghai Jiaotong University,undefined
来源
Journal of Combinatorial Optimization | 2019年 / 37卷
关键词
Three-dimensional stable matching; Hybrid preference; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the problem of stable matching with hybrid preferences among the three agent sets U, V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1$$\end{document} and V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_2$$\end{document}. We consider two hybrid preferences. One is that the agents of set U has a strict preference to the agents of set V1×V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1 \times V_2$$\end{document}, and the agents of set V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1$$\end{document} and V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_2$$\end{document} have a strict preference to the agents of set U respectively. The other is that the agents of set U has a strict preference to the agents of set V1×V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1 \times V_2$$\end{document}, and the agents of set V1×V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1 \times V_2$$\end{document} has a strict preference to the agents of set U.
引用
收藏
页码:330 / 336
页数:6
相关论文
共 50 条
  • [1] Three-dimensional stable matching with hybrid preferences
    Zhang, Feng
    Li, Jing
    Fan, Junxiang
    Shen, Huili
    Shen, Jian
    Yu, Hua
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (01) : 330 - 336
  • [2] Three-dimensional stable matching with cyclic preferences
    Eriksson, Kirnmo
    Sjostrand, Jonas
    Strimling, Pontus
    MATHEMATICAL SOCIAL SCIENCES, 2006, 52 (01) : 77 - 87
  • [3] Three-dimensional stable matching with cyclic preferences
    Pashkovich, Kanstantsin
    Poirrier, Laurent
    OPTIMIZATION LETTERS, 2020, 14 (08) : 2615 - 2623
  • [4] Three-dimensional stable matching with cyclic preferences
    Kanstantsin Pashkovich
    Laurent Poirrier
    Optimization Letters, 2020, 14 : 2615 - 2623
  • [5] Computing relaxations for the three-dimensional stable matching problem with cyclic preferences
    Cseh, Agnes
    Escamocher, Guillaume
    Quesada, Luis
    CONSTRAINTS, 2023, 28 (02) : 138 - 165
  • [6] Computing relaxations for the three-dimensional stable matching problem with cyclic preferences
    Ágnes Cseh
    Guillaume Escamocher
    Luis Quesada
    Constraints, 2023, 28 : 138 - 165
  • [7] A collection of Constraint Programming models for the three-dimensional stable matching problem with cyclic preferences
    Ágnes Cseh
    Guillaume Escamocher
    Begüm Genç
    Luis Quesada
    Constraints, 2022, 27 : 249 - 283
  • [8] A collection of Constraint Programming models for the three-dimensional stable matching problem with cyclic preferences
    Cseh, Agnes
    Escamocher, Guillaume
    Genc, Begum
    Quesada, Luis
    CONSTRAINTS, 2022, 27 (03) : 249 - 283
  • [9] On the Existence of Three-Dimensional Stable Matchings with Cyclic Preferences
    Lam, Chi-Kit
    Plaxton, C. Gregory
    THEORY OF COMPUTING SYSTEMS, 2022, 66 (03) : 679 - 695
  • [10] On the Existence of Three-Dimensional Stable Matchings with Cyclic Preferences
    Lam, Chi-Kit
    Plaxton, C. Gregory
    ALGORITHMIC GAME THEORY (SAGT 2019), 2019, 11801 : 329 - 342