A bifurcation problem for a class of periodically perturbed autonomous parabolic equations

被引:0
作者
Mikhail Kamenskii
Boris Mikhaylenko
Paolo Nistri
机构
[1] Voronezh State University,Department of Mathematics
[2] Università di Siena,Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche
来源
Boundary Value Problems | / 2013卷
关键词
autonomous parabolic equations; periodic perturbations; limit cycle; bifurcation; periodic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the problem of the existence of a branch of T-periodic solutions originating from the isolated limit cycle of an autonomous parabolic equation in a Banach space when it is perturbed by a nonlinear T-periodic term of small amplitude.
引用
收藏
相关论文
共 69 条
[1]  
di Bernardo M(2008)Bifurcations in nonsmooth dynamical systems SIAM Rev 50 629-701
[2]  
Budd CJ(1959)Periodic solutions of a perturbed autonomous system Ann. Math 70 490-529
[3]  
Champneys AR(1949)On Poincaré’s theory of periodic solutions Akad. Nauk SSSR. Prikl. Mat. Meh 13 633-646
[4]  
Kowalczyk P(1963)On the stability of a center for time-periodic perturbations Tr. Mosk. Mat. Obŝ 12 3-52
[5]  
Nordmark AB(2000)On the continuation of periodic orbits Methods Appl. Anal 7 85-104
[6]  
Olivar G(1987)Periodic solutions of periodically harvested Lotka-Volterra systems Rev. Colomb. Mat 21 337-345
[7]  
Piiroinen PT(1988)Periodic solutions of periodically forced nondegenerate systems Rocky Mt. J. Math 18 49-65
[8]  
Loud WS(1988)Stability properties of periodic solutions of periodically forced non degenerate systems Rocky Mt. J. Math 18 785-800
[9]  
Malkin IG(1984)Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators SIAM J. Math. Anal 15 69-97
[10]  
Melnikov VK(1973)Small periodic perturbations of a class of conservative systems J. Differ. Equ 13 438-456