Existence of nontrivial solution for Schrödinger–Poisson systems with indefinite steep potential well

被引:0
作者
Juntao Sun
Tsung-Fang Wu
Yuanze Wu
机构
[1] Shandong University of Technology,School of Science
[2] Qufu Normal University,School of Mathematical Sciences
[3] National University of Kaohsiung,Department of Applied Mathematics
[4] China University of Mining and Technology,College of Science
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Nontrivial solution; Schrödinger–Poisson system; Steep potential well; Penalized functions; Primary 35B09; Secondary 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a class of nonlinear Schrödinger–Poisson systems with indefinite steep potential well: -Δu+Vλ(x)u+K(x)ϕu=|u|p-2uinR3,-Δϕ=Kxu2inR3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\Delta u+V_{\lambda }(x)u+K(x)\phi u=|u|^{p-2}u &{} \text { in }\mathbb {R}^{3},\\ -\Delta \phi =K\left( x\right) u^{2} &{} \ \text {in }\mathbb {R}^{3}, \end{array} \right. \end{aligned}$$\end{document} where 3<p<4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3<p< 4$$\end{document}, Vλ(x)=λa(x)+b(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\lambda }(x)=\lambda a(x)+b(x)$$\end{document} with λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} and K(x)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K(x)\ge 0$$\end{document} for all x∈R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \mathbb {R}^{3}$$\end{document}. We require that a∈C(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in C( \mathbb {R}^{3}) $$\end{document} is nonnegative and has a potential well Ωa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{a}$$\end{document}, namely a(x)≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(x)\equiv 0$$\end{document} for x∈Ωa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \Omega _{a}$$\end{document} and a(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(x)>0$$\end{document} for x∈R3\Ωa¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \mathbb {R}^{3}\setminus \overline{\Omega _{a}}$$\end{document}. Unlike most other papers on this problem, we allow that b∈C(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in C(\mathbb {R}^{3}) $$\end{document} is unbounded below and sign-changing. By introducing some new hypotheses on the potentials and applying the method of penalized functions, we obtain the existence of nontrivial solutions for λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} sufficiently large. Furthermore, the concentration behavior of the nontrivial solution is also described as λ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow \infty $$\end{document}.
引用
收藏
相关论文
共 66 条
  • [1] Ambrosetti A(2008)Multiple bound states for the Schrödinger–Poisson problem Commun. Contemp. Math. 10 39-404
  • [2] Ruiz D(2010)Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity J. Differ. Equ. 249 1746-1763
  • [3] Azzollini A(1998)An eigenvalue problem for the Schrödinger–Maxwell equations Topol. Methods Nonlinear Anal. 11 283-293
  • [4] Benci V(1995)Existence and multiplicity results for superlinear elliptic problems on Commun. Partial Differ. Equ. 20 1725-1741
  • [5] Fortunato D(2001)Nonlinear Schrödinger equations with steep potential well Commun. Contemp. Math. 3 549-569
  • [6] Bartsch T(2013)Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential Discrete Contin. Dyn. Syst. 33 7-26
  • [7] Wang Z-Q(1979)Remarks on the Schrödinger operator with singular complex potentials J. Math. Pures Appl. 58 137-151
  • [8] Bartsch T(2013)Existence and multiplicity of positive solutions for the nonlinear Schrödinger–Poisson equations Proc. R. Soc. Edinb. Sect. A 143 745-764
  • [9] Pankov A(2010)Positive solutions for some non-autonomous Schrödinger–Poisson systems J. Differ. Equ. 248 521-543
  • [10] Wang Z-Q(1996)Local mountain passes for semilinear elliptic problems in unbounded domains Calc. Var. Partial Differ. Equ. 4 121-137