Growth of GaN on porous SiC and GaN substrates

被引:0
作者
C. K. Inoki
T. S. Kuan
C. D. Lee
Ashutosh Sagar
R. M. Feenstra
D. D. Koleske
D. J. Díaz
P. W. Bohn
I. Adesida
机构
[1] University at Albany,Department of Physics
[2] SUNY,Department of Physics
[3] Carnegie Mellon University,Chemical Processing Science Department
[4] Sandia National Laboratories,Beckman Institute
[5] University of Illinois,undefined
来源
Journal of Electronic Materials | 2003年 / 32卷
关键词
GaN; porous SiC; porous GaN; strain;
D O I
暂无
中图分类号
学科分类号
摘要
We have studied the growth of GaN on porous SiC and GaN substrates, employing both plasma-assisted molecular-beam epitaxy (PAMBE) and metal-organic chemical-vapor deposition (MOCVD). For growth on porous SiC, transmission electron microscopy (TEM) observations indicate that the epitaxial-GaN growth initiates primarily from surface areas between pores, and the exposed surface pores tend to extend into GaN as open tubes and trap Ga droplets. The dislocation density in the GaN layers is similar to, or slightly less than, that observed in layers grown on nonporous substrates. For the case of GaN growth on porous GaN, the overgrown layer replicates the underlying dislocation structure (although considerable dislocation reduction can occur as this overgrowth proceeds, independent of the presence of the porous layer). The GaN layers grown on a porous SiC substrate were found to be mechanically more relaxed than those grown on nonporous substrates; electron-diffraction patterns indicate that the former are free of misfit strain or are even in tension after cooling to room temperature.
引用
收藏
页码:855 / 860
页数:5
相关论文
共 72 条
[1]  
Saddow S.E.(2001)undefined Mater. Sci. Forum 353–356 115-115
[2]  
Mynbaeva M.(2000)undefined Appl. Phys. Lett. 76 1113-1113
[3]  
Choyke W.J.(1999)undefined MRS Internet J. Nitride Semicond. Res. 4 14-14
[4]  
Bai S.(2002)undefined Appl. Phys. Lett. 80 980-980
[5]  
Melnychuk G.(1993)undefined Appl. Phys. Lett. 62 2836-2836
[6]  
Koshka Y.(2000)undefined J. Vac. Sci. Technol. B 18 3514-3514
[7]  
Dmitriev V.(2001)undefined Appl. Phys. Lett. 79 3428-3428
[8]  
Wood C.E.C.(2002)undefined J. Appl. Phys. 92 4070-4070
[9]  
Mynbaeva M.(1998)undefined J. Electron. Mater. 27 308-308
[10]  
Titkov A.(2002)undefined Appl. Phys. Lett. 81 1940-1940