Wintgen Ideal Surfaces in Four-dimensional Neutral Indefinite Space Form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R^4_2(c)}$$\end{document}

被引:0
作者
Bang-Yen Chen
机构
[1] Michigan State University,Department of Mathematics
关键词
Primary 53C40; Secondary 53A35; 53C50; Inequality; Wintgen ideal surfaces; pseudo-hyperbolic 4-space; Gauss curvature; normal curvature; mean curvature;
D O I
10.1007/s00025-011-0119-8
中图分类号
学科分类号
摘要
For an oriented space-like surface M in a four-dimensional indefinite space form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R^4_2(c)}$$\end{document}, there is a Wintgen type inequality; namely, the Gauss curvature K, the normal curvature KD and mean curvature vector H of M in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R^4_2(c)}$$\end{document} satisfy the general inequality: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K+K^D \geq \langle H,H \rangle+c}$$\end{document}. An oriented space-like surface in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R^4_2(c)}$$\end{document} is called Wintgen ideal if it satisfies the equality case of the inequality identically. In this paper, we study Wintgen ideal surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R^4_2(c)}$$\end{document} . In particular, we classify Wintgen ideal surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R^4_2(c)}$$\end{document} with constant Gauss and normal curvatures. We also completely classify Wintgen ideal surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb E^4_2}$$\end{document} satisfying |K| = |KD| identically.
引用
收藏
页码:329 / 345
页数:16
相关论文
共 14 条
  • [1] Chen B.Y.(2000)Exact solutions of a class of differential equations of Lamé’s type and its applications to contact geometry Rocky Mount. J. Math. 30 497-506
  • [2] Chen B.Y.(2010)A minimal immersion of hyperbolic plane in neutral pseudo-hyperbolic 4-space and its characterization Arch. Math. 94 291-299
  • [3] Chen B.Y.(2010)Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvatures Ann. Global Anal. Geom. 38 145-160
  • [4] Chen B.Y.(2010)Complete classification of parallel spatial surfaces in pseudo-Riemannian space forms with arbitrary index and dimension J. Geom. Phys. 60 260-280
  • [5] Decu S.(2010)On the intrinsic Deszcz symmetries and the extrinsic Chen character of Wintgen ideal submanifolds Tamkang J. Math. 41 109-116
  • [6] Petrović–Torgašev M.(1983)Normal curvature of surfaces in space forms Pacific J. Math. 106 95-103
  • [7] Verstraelen L.(1983)Minimal surfaces with constant curvature in 4-dimensional space forms Proc. Am. Math. Soc. 89 133-138
  • [8] Guadalupe I.V.(2008)On Deszcz symmetries of Wintgen ideal submanifolds Arch. Math. (Brno). 44 57-67
  • [9] Rodriguez L.(2002)Spacelike maximal surfaces in 4-dimensional space forms of index 2 Tokyo J. Math. 25 295-306
  • [10] Kenmotsu K.(1979)Sur l’inégalité de Chen-Willmore C. R. Acad. Sci. Paris 288 993-995