Holomorphic normal form of nonlinear perturbations of nilpotent vector fields

被引:0
作者
Laurent Stolovitch
Freek Verstringe
机构
[1] Université de Nice — Sophia Antipolis,CNRS, Laboratoire J.
[2] Parc Valrose,A. Dieudonné U.M.R. 6621
[3] Royal Observatory of Belgium,undefined
来源
Regular and Chaotic Dynamics | 2016年 / 21卷
关键词
local analytic dynamics; fixed point; normal form; Belitskii normal form; small divisors; Newton method; analytic invariant manifold; complete integrability; 34M35; 34C20; 37J40; 37F50; 58C15; 34C45;
D O I
暂无
中图分类号
学科分类号
摘要
We consider germs of holomorphic vector fields at a fixed point having a nilpotent linear part at that point, in dimension n ≥ 3. Based on Belitskii’s work, we know that such a vector field is formally conjugate to a (formal) normal form. We give a condition on that normal form which ensures that the normalizing transformation is holomorphic at the fixed point.We shall show that this sufficient condition is a nilpotent version of Bruno’s condition (A). In dimension 2, no condition is required since, according to Stróżyna–Żołladek, each such germ is holomorphically conjugate to a Takens normal form. Our proof is based on Newton’s method and sl2(C)-representations.
引用
收藏
页码:410 / 436
页数:26
相关论文
共 50 条
  • [1] Holomorphic normal form of nonlinear perturbations of nilpotent vector fields
    Stolovitch, Laurent
    Verstringe, Freek
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (04) : 410 - 436
  • [2] Unique normal forms for nilpotent planar vector fields
    Chen, GT
    Wang, D
    Wang, XF
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10): : 2159 - 2174
  • [3] NORMAL FORMS FOR SINGULARITIES OF ONE DIMENSIONAL HOLOMORPHIC VECTOR FIELDS
    Garijo, Antonio
    Gasull, Armengol
    Jarque, Xavier
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [4] Normal form theory for reversible equivariant vector fields
    Baptistelli, Patricia H.
    Manoel, Miriam
    Zeli, Iris O.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (03): : 935 - 954
  • [5] Normal form theory for reversible equivariant vector fields
    Patricia H. Baptistelli
    Miriam Manoel
    Iris O. Zeli
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 935 - 954
  • [6] The analytic and formal normal form for the nilpotent singularity
    Strózyna, E
    Zoladek, H
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (02) : 479 - 537
  • [7] Normal form for maps with nilpotent linear part
    Mokhtari, Fahimeh
    Roell, Ernst
    Sanders, Jan A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2261):
  • [8] Normal form of bimeromorphically contractible holomorphic Lagrangian submanifolds
    Amerik, Ekaterina
    Verbitsky, Misha
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, : 540 - 557
  • [9] GLOBAL HYPOELLIPTICITY, GLOBAL SOLVABILITY AND NORMAL FORM FOR A CLASS OF REAL VECTOR FIELDS ON A TORUS AND APPLICATION
    Petronilho, G.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (12) : 6337 - 6349
  • [10] C∞-normal forms of local vector fields
    Belitskii, G
    ACTA APPLICANDAE MATHEMATICAE, 2002, 70 (1-3) : 23 - 41