Countable Homogeneous Lattices

被引:0
作者
A. Abogatma
J. K. Truss
机构
[1] University of Leeds,Department of Pure Mathematics
[2] University of Garyounis Benghazi,Department of Mathematics
来源
Order | 2015年 / 32卷
关键词
Lattice; Homogeneous; Amalgamation property; 06A99; 03G10;
D O I
暂无
中图分类号
学科分类号
摘要
We show that there are uncountably many countable homogeneous lattices. We give a discussion of which such lattices can be modular or distributive. The method applies to show that certain other classes of structures also have uncountably many homogeneous members.
引用
收藏
页码:239 / 243
页数:4
相关论文
共 50 条
  • [21] Embedding of Countable Orders in Turing Degrees
    Sh. T. Ishmukhametov
    [J]. Mathematical Notes, 2002, 72 : 631 - 635
  • [22] Embedding Finite Lattices into Finite Biatomic Lattices
    Kira Adaricheva
    Friedrich Wehrung
    [J]. Order, 2003, 20 : 31 - 48
  • [23] Embedding finite lattices into finite biatomic lattices
    Adaricheva, K
    Wehrung, F
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2003, 20 (01): : 31 - 48
  • [24] A survey of recent results on congruence lattices of lattices
    Tuma, T
    Wehrung, F
    [J]. ALGEBRA UNIVERSALIS, 2002, 48 (04) : 439 - 471
  • [25] Lattices isomorphic to subsemilattice lattices of finite trees
    Semenova, M. V.
    Skorobogatov, K. M.
    [J]. ALGEBRA AND LOGIC, 2009, 48 (04) : 268 - 281
  • [26] A survey of recent results on congruence lattices of lattices
    Tůma J.
    Wehrung F.
    [J]. algebra universalis, 2002, 48 (4) : 439 - 471
  • [27] Lattices isomorphic to subsemilattice lattices of finite trees
    M. V. Semenova
    K. M. Skorobogatov
    [J]. Algebra and Logic, 2009, 48 : 268 - 281
  • [29] Notes on planar semimodular lattices. VIII. Congruence lattices of SPS lattices
    G. Grätzer
    [J]. Algebra universalis, 2020, 81
  • [30] Lattice generation of small equivalences of a countable set
    Czedli, G
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1996, 13 (01): : 11 - 16