Multiple Cotangent and Generalized Eta Functions

被引:0
作者
Makoto Ishibashi
机构
[1] Kagoshima National College of Technology,Department of General Education
来源
The Ramanujan Journal | 2000年 / 4卷
关键词
multiple zeta functions; generalized eta functions; cotangent functions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we shall construct multiple analogue of the cotangent functions by using the multiple Hurwitz zeta functions and study their properties and special values. In particular, we express the double cotangent functions in terms of generalized eta functions of Berndt and Lewittes.
引用
收藏
页码:221 / 229
页数:8
相关论文
共 9 条
[1]  
Arakawa T.(1982)Generalized eta-functions and certain ray class invariants of real quadratic fields Math. Ann. 260 475-494
[2]  
Barnes E.W.(1900)The theory of the double gamma function Phil. Trans. Royal Soc. (A) 196 265-388
[3]  
Barnes E.W.(1904)On the theory of the multiple gamma functions Trans. Cambridge Phil. Soc. 19 374-425
[4]  
Berndt B.C.(1973)Generalized Dedekind eta-functions and generalized Dedkind sums Trans. Am. Math. Soc. 178 495-508
[5]  
Kurokawa N.(1991)Multiple sine functions and Selberg zeta functions Proc. Japan Acad. 67 61-64
[6]  
Kurokawa N.(1992)Multiple zeta functions; an example Adv. Studies Pure Math. 21 219-226
[7]  
Kurokawa N.(1992)Gamma factors and Plancherel measures Proc. Japan Acad. 68 256-260
[8]  
Lewittes J.(1972)Analytic continuation of Eisenstein series Trans. Am. Math. Soc. 171 469-490
[9]  
Shintani T.(1977)On a Kronecker limit formula for real quadratic fields J. Fac. Sci. Univ. Tokyo Sec. 1A 24 167-199