Feasible Operations on Proofs: The Logic of Proofs for Bounded Arithmetic

被引:0
作者
Evan Goris
机构
[1] The Graduate Center of the City University of New York,
来源
Theory of Computing Systems | 2008年 / 43卷
关键词
Logic of proofs; Bounded arithmetic;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a semantics for the logic of proofs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{LP}$\end{document} in which all the operations on proofs are realized by feasibly computable functions. More precisely, we will show that the completeness of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{LP}$\end{document} for the semantics of proofs of Peano Arithmetic extends to the semantics of proofs in Buss’ bounded arithmetic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{S}^{1}_{2}$\end{document} . In view of applications in epistemology of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{LP}$\end{document} in particular and justification logics in general this result shows that explicit knowledge in the propositional framework can be made computationally feasible.
引用
收藏
页码:185 / 203
页数:18
相关论文
共 7 条
  • [1] Artemov S.N.(2001)Explicit provability and constructive semantics Bull. Symb. Log. 7 1-36
  • [2] Artemov S.N.(2005)Introducing justification into epistemic logic J. Log. Comput. 15 10-59
  • [3] Nogina E.(1993)On the provability logic of bounded arithmetic Ann. Pure Appl. Log. 61 75-93
  • [4] Berarducci A.(1971)Existence and feasibility in arithmetic J. Symb. Log. 36 494-508
  • [5] Verbrugge R.(1976)Provability interpretations of modal logic Isr. J. Math. 25 287-304
  • [6] Parikh R.(undefined)undefined undefined undefined undefined-undefined
  • [7] Solovay R.M.(undefined)undefined undefined undefined undefined-undefined