Renormalized solutions for convection-diffusion problems involving a nonlocal operator

被引:0
作者
Adama Ouédraogo
Dofyniwassouani Alain Houede
Idrissa Ibrango
机构
[1] Université Nazi Boni (UNB),Département de Mathématiques
[2] Université Nazi Boni (UNB),Laboratoire de Mathématiques, d’Informatique et Applications (LaMIA)
来源
Nonlinear Differential Equations and Applications NoDEA | 2021年 / 28卷
关键词
Degenerate parabolic-hyperbolic equation; Entropy solution; Renormalized entropy solution; Anisotropic diffusion-convection; Nonlocal operator; Kruzhkov doubling of variables method; Primary 35R11; 35L65; Secondary 35K59; 35D99;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to establish an L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-well-posedness theory in the sense of renormalized entropy solution for anisotropic diffusion-convection problems involving a nonlocal diffusion operator. Our strategy is to follow the approach developed in Bendahmane and Karlsen (SIAM J Math Anal, 36(2):405–422, 2004) to generalize the existence and the uniqueness results of Karlsen and Ulusoy (J Differ Equ 116:1–23, 2011) to the class of integrable initial data with a term source depending on the unknown function u.
引用
收藏
相关论文
共 26 条
[21]   Existence and behavior of the solutions for an elliptic equation with anonlocal operator involving critical and discontinuous nonlinearity [J].
dos Santos, Gelson C. G. ;
Tavares, Leandro S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (01)
[22]   Multiplicity of solutions for elliptic equations involving fractional operator and sign-changing nonlinearity [J].
Saoudi, K. ;
Ghanmi, A. ;
Horrigue, S. .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (04) :1743-1756
[23]   Multiplicity of solutions for elliptic equations involving fractional operator and sign-changing nonlinearity [J].
K. Saoudi ;
A. Ghanmi ;
S. Horrigue .
Journal of Pseudo-Differential Operators and Applications, 2020, 11 :1743-1756
[24]   Existence and uniqueness of weak solutions for nonlocal parabolic problems via the Galerkin method [J].
Yangari, Miguel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) :910-921
[25]   Existence, uniqueness and regularity of solutions to systems of nonlocal obstacle problems related to optimal switching [J].
Lundstrom, Niklas L. P. ;
Olofsson, Marcus ;
Onskog, Thomas .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) :13-31
[26]   EXISTENCE AND UNIQUENESS OF WEAK AND ENTROPY SOLUTIONS FOR HOMOGENEOUS NEUMANN BOUNDARY-VALUE PROBLEMS INVOLVING VARIABLE EXPONENTS [J].
Bonzi, Bernard K. ;
Nyanquini, Ismael ;
Ouaro, Stanislas .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,