共 49 条
- [41] k-sparse vector recovery via Truncated ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} local minimization Optimization Letters, 2024, 18 (1) : 291 - 305
- [42] k Block Sparse Vector Recovery via Block ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} Minimization Circuits, Systems, and Signal Processing, 2023, 42 (5) : 2897 - 2915
- [43] A Domain Decomposition Fourier Continuation Method for Enhanced L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} Regularization Using Sparsity of Edges in Reconstructing Fourier Data Journal of Scientific Computing, 2018, 74 (2) : 851 - 871
- [44] Frame-based block sparse compressed sensing via l2/l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_2/l_1$$\end{document}-synthesis EURASIP Journal on Advances in Signal Processing, 2024 (1)
- [45] An ℓ2-ℓq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2-\ell ^q$$\end{document} Regularization Method for Large Discrete Ill-Posed Problems Journal of Scientific Computing, 2019, 78 (3) : 1526 - 1549
- [46] Weighted ℓp(0<p≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}(0<p\le 1)$$\end{document} minimization with non-uniform weights for sparse recovery under partial support information Computational and Applied Mathematics, 2022, 41 (2)
- [47] Nonconvex ℓp-αℓq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p-\alpha \ell _q$$\end{document} minimization method and p-RIP condition for stable recovery of approximately k-sparse signals Computational and Applied Mathematics, 2024, 43 (1)
- [48] Stable recovery of approximately block k-sparse signals with partial block support information via weighted ℓ2/ℓp(0<p≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _2/\ell _p\,(0<p\le 1)$$\end{document} minimization Computational and Applied Mathematics, 2024, 43 (4)
- [49] On the implementation of ADMM with dynamically configurable parameter for the separable ℓ1/ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}/\ell _{2}$$\end{document} minimizationOn the implementation of ADMM with dynamically...J.Wang, Q.Ma Optimization Letters, 2025, 19 (1) : 85 - 102