Reflected solutions of backward stochastic differential equations driven by G-Brownian motion

被引:0
作者
Hanwu Li
Shige Peng
Abdoulaye Soumana Hima
机构
[1] Shandong University,School of Mathematics
[2] Shandong University,Zhongtai Institute of Finance
[3] Université de Rennes 1,Institut de Recherche Mathématiques de Rennes
[4] Université de Maradi,Département de Mathématiques
来源
Science China Mathematics | 2018年 / 61卷
关键词
-expectation; reflected backward stochastic differential equations; obstacle problems for fully nonlinear PDEs; 60H10; 60H30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected G-BSDEs, we apply a “martingale condition” instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization. We then give some applications including a generalized Feynman-Kac formula of an obstacle problem for fully nonlinear partial differential equation and option pricing of American types under volatility uncertainty.
引用
收藏
页码:1 / 26
页数:25
相关论文
共 38 条
[1]  
Crandall M(1992)User’s guide to the viscosity solutions of second order partial differential equations Bull Amer Math Soc (NS) 27 1-67
[2]  
Ishii H(1996)Backward stochastic differential equations with reflection and Dynkin games Ann Probab 24 2024-2056
[3]  
Lions P L(2011)Function spaces and capacity related to a sublinear expectation: Application to Potential Anal 34 139-161
[4]  
Cvitanic J(1997)-Brownian motion pathes Ann Probab 23 702-737
[5]  
Karatzas I(2002)Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s Stochastics Stochastics Rep 74 571-596
[6]  
Denis L(2000)Reflected BSDE’s with discontinuous barrier and application Stochastic Process Appl 85 177-188
[7]  
Hu M(2014)Reflected BSDE’s and mixed game problem Stochastic Process Appl 124 759-784
[8]  
Peng S(2014)Backward stochastic differential equations driven by Stochastic Process Appl 124 1170-1195
[9]  
El Karoui N(2009)-Brownian motion Acta Math Appl Sin Engl Ser 25 539-546
[10]  
Kapoudjian C(1988)Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by Appl Math Optim 17 37-60