Conformal invariance in two-dimensional turbulence

被引:0
作者
D. Bernard
G. Boffetta
A. Celani
G. Falkovich
机构
[1] Service de Physique Théorique de Saclay,Dipartimento di Fisica Generale and INFN
[2] CEA/CNRS,undefined
[3] Orme des Merisiers,undefined
[4] Università di Torino,undefined
[5] via Pietro Giuria 1,undefined
[6] CNRS,undefined
[7] INLN,undefined
[8] 1361 Route des Lucioles,undefined
[9] Physics of Complex Systems,undefined
[10] Weizmann Institute of Science,undefined
来源
Nature Physics | 2006年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The simplicity of fundamental physical laws manifests itself in fundamental symmetries. Although systems with an infinite number of strongly interacting degrees of freedom (in particle physics and critical phenomena) are hard to describe, they often demonstrate symmetries, in particular scale invariance. In two dimensions (2D) locality often extends scale invariance to a wider class of conformal transformations that allow non-uniform rescaling. Conformal invariance enables a thorough classification of universality classes of critical phenomena in 2D. Is there conformal invariance in 2D turbulence, a paradigmatic example of a strongly interacting non-equilibrium system? Here, we show numerically that some features of a 2D inverse turbulent cascade show conformal invariance. We observe that the statistics of vorticity clusters are remarkably close to that of critical percolation, one of the simplest universality classes of critical phenomena. These results represent a key step in the unification of 2D physics within the framework of conformal symmetry.
引用
收藏
页码:124 / 128
页数:4
相关论文
共 54 条
[1]  
Kraichnan RH(1967)Inertial ranges in two-dimensional turbulence Phys. Fluids 10, 1417-1423
[2]  
Kraichnan RH(1980)Two-dimensional turbulence Rep. Prog. Phys. 43, 547-619
[3]  
Montgomery D(1993)The theory of turbulence in two dimensions Nucl. Phys. B 396, 367-385
[4]  
Polyakov AM(2002)Two-dimensional turbulence: a physicist approach Phys. Rep. 362, 1-62
[5]  
Tabeling P(2002)Two-dimensional turbulence: a review of some recent experiments Rep. Prog. Phys. 65, 845-894
[6]  
Kellay H(2001)Particles and fields in fluid turbulence Rev. Mod. Phys. 73, 913-975
[7]  
Goldburg WI(2000)Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior Phys. Rev. E 61, R29-R32
[8]  
Falkovich G(1970)Conformal symmetry of critical fluctuations JETP Lett. 12, 381-383
[9]  
Gawedzki K(1984)Conformal field theory Nucl. Phys. B 241, 333-380
[10]  
Vergassola M(2000)Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 118, 221-288