Compositional verification of concurrent systems by combining bisimulations

被引:0
作者
Frédéric Lang
Radu Mateescu
Franco Mazzanti
机构
[1] Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),Univ. Grenoble Alpes, Inria, CNRS
[2] ISTI-CNR,undefined
来源
Formal Methods in System Design | 2021年 / 58卷
关键词
Concurrency theory; Labelled transition system; Modal mu-calculus; Model checking; State space reduction; Temporal logic;
D O I
暂无
中图分类号
学科分类号
摘要
One approach to verify a property expressed as a modal μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus formula on a system with several concurrent processes is to build the underlying state space compositionally (i.e., by minimizing and recomposing the state spaces of individual processes in a hierarchical way, keeping visible only the relevant actions occurring in the formula), and check the formula on the resulting state space. It was shown previously that, when checking the formulas of the Lμdbr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\mu }^{ dbr }$$\end{document} fragment of the μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus (consisting of weak modalities only), individual processes can be minimized modulo divergence-preserving branching (divbranching for short) bisimulation. In this paper, we refine this approach to handle formulas containing both strong and weak modalities, so as to enable a combined use of strong or divbranching bisimulation minimization on concurrent processes depending whether they contain or not the actions occurring in the strong modalities of the formula. We extend Lμdbr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\mu }^{ dbr }$$\end{document} with strong modalities and show that the combined minimization approach preserves the truth value of formulas of the extended fragment. We implemented this approach on top of the CADP verification toolbox and demonstrated how it improves the capabilities of compositional verification on realistic examples of concurrent systems. In particular, we applied our approach to the verification problems of the RERS 2019 challenge and observed drastic reductions of the state space compared to the approach in which only strong bisimulation minimization is used, on formulas not preserved by divbranching bisimulation.
引用
收藏
页码:83 / 125
页数:42
相关论文
共 50 条
[41]   Fuzzy Bisimulations for Nondeterministic Fuzzy Transition Systems [J].
Qiao, Sha ;
Zhu, Ping ;
Feng, Jun-e .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (07) :2450-2463
[42]   Concurrent software verification with states, events, and deadlocks [J].
Chaki, S ;
Clarke, E ;
Ouaknine, J ;
Sharygina, N ;
Sinha, N .
FORMAL ASPECTS OF COMPUTING, 2005, 17 (04) :461-483
[43]   A CONCEPTUAL SCHEME FOR COMPOSITIONAL MODEL-CHECKING VERIFICATION OF CRITICAL COMMUNICATING SYSTEMS [J].
Morales, Luis E. Mendoza ;
Tunon, Manuel I. Capel ;
Perez, Maria A. ;
Ahklaki, Kawtar Benghazi .
ICEIS 2008: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL ISAS-1: INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION, VOL 1, 2008, :86-+
[44]   Combining test case generation and runtime verification [J].
Artho, C ;
Barringer, H ;
Goldberg, A ;
Havelund, K ;
Khurshid, S ;
Lowry, M ;
Pasareanu, C ;
Rosu, G ;
Sen, K ;
Visser, W ;
Washington, R .
THEORETICAL COMPUTER SCIENCE, 2005, 336 (2-3) :209-234
[45]   Compositional Verification of Multi-Agent Systems in Temporal Multi-Epistemic Logic [J].
Engelfriet J. ;
Jonker C.M. ;
Treur J.A.N. .
Journal of Logic, Language and Information, 2002, 11 (2) :195-225
[46]   SVL: A scripting language for compositional verification [J].
Garavel, H ;
Lang, F .
FORMAL TECHNIQUES FOR NETWORKED AND DISTRIBUTED SYSTEMS, 2001, 69 :377-392
[47]   A framework for compositional verification of multi-valued systems via abstraction-refinement [J].
Meller, Yael ;
Grumberg, Orna ;
Shoham, Sharon .
INFORMATION AND COMPUTATION, 2016, 247 :169-202
[48]   A Framework for Compositional Verification of Multi-valued Systems via Abstraction-Refinement [J].
Meller, Yael ;
Grumberg, Orna ;
Shoham, Sharon .
AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, PROCEEDINGS, 2009, 5799 :271-288
[49]   Automated assumption generation for compositional verification [J].
Anubhav Gupta ;
K. L. McMillan ;
Zhaohui Fu .
Formal Methods in System Design, 2008, 32 :285-301
[50]   Compositional verification of sequential programs with procedures [J].
Gurov, Dilian ;
Huisman, Marieke ;
Sprenger, Christoph .
INFORMATION AND COMPUTATION, 2008, 206 (07) :840-868