Compositional verification of concurrent systems by combining bisimulations

被引:0
作者
Frédéric Lang
Radu Mateescu
Franco Mazzanti
机构
[1] Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),Univ. Grenoble Alpes, Inria, CNRS
[2] ISTI-CNR,undefined
来源
Formal Methods in System Design | 2021年 / 58卷
关键词
Concurrency theory; Labelled transition system; Modal mu-calculus; Model checking; State space reduction; Temporal logic;
D O I
暂无
中图分类号
学科分类号
摘要
One approach to verify a property expressed as a modal μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus formula on a system with several concurrent processes is to build the underlying state space compositionally (i.e., by minimizing and recomposing the state spaces of individual processes in a hierarchical way, keeping visible only the relevant actions occurring in the formula), and check the formula on the resulting state space. It was shown previously that, when checking the formulas of the Lμdbr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\mu }^{ dbr }$$\end{document} fragment of the μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus (consisting of weak modalities only), individual processes can be minimized modulo divergence-preserving branching (divbranching for short) bisimulation. In this paper, we refine this approach to handle formulas containing both strong and weak modalities, so as to enable a combined use of strong or divbranching bisimulation minimization on concurrent processes depending whether they contain or not the actions occurring in the strong modalities of the formula. We extend Lμdbr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\mu }^{ dbr }$$\end{document} with strong modalities and show that the combined minimization approach preserves the truth value of formulas of the extended fragment. We implemented this approach on top of the CADP verification toolbox and demonstrated how it improves the capabilities of compositional verification on realistic examples of concurrent systems. In particular, we applied our approach to the verification problems of the RERS 2019 challenge and observed drastic reductions of the state space compared to the approach in which only strong bisimulation minimization is used, on formulas not preserved by divbranching bisimulation.
引用
收藏
页码:83 / 125
页数:42
相关论文
共 50 条
[31]   Approximate verification of concurrent systems using token structures and invariants [J].
Antonino, Pedro ;
Gibson-Robinson, Thomas ;
Roscoe, A. W. .
INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2022, 24 (04) :613-633
[32]   A Modular Approach for Reusing Formalisms in Verification Tools of Concurrent Systems [J].
Andre, Etienne ;
Barbot, Benoit ;
Demoulins, Clement ;
Hillah, Lom Messan ;
Hulin-Hubard, Francis ;
Kordon, Fabrice ;
Linard, Alban ;
Petrucci, Laure .
FORMAL METHODS AND SOFTWARE ENGINEERING, 2013, 8144 :199-214
[33]   Approximate verification of concurrent systems using token structures and invariants [J].
Pedro Antonino ;
Thomas Gibson-Robinson ;
A. W. Roscoe .
International Journal on Software Tools for Technology Transfer, 2022, 24 :613-633
[34]   Approximate bisimulations for fuzzy-transition systems [J].
Qiao, Sha ;
Zhu, Ping ;
Pedrycz, Witold .
FUZZY SETS AND SYSTEMS, 2023, 472
[35]   Verification of GALS Systems by Combining Synchronous Languages and Process Calculi [J].
Garavel, Hubert ;
Thivolle, Damien .
MODEL CHECKING SOFTWARE, 2009, 5578 :241-260
[36]   Interpolation Guided Compositional Verification [J].
Lin, Shang-Wei ;
Sun, Jun ;
Truong Khanh Nguyen ;
Liu, Yang ;
Dong, Jin Song .
2015 30TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE), 2015, :65-74
[37]   Multi-parameterised compositional verification of safety properties [J].
Siirtola, Antti ;
Kortelainen, Juha .
INFORMATION AND COMPUTATION, 2015, 244 :23-48
[38]   Compositional Verification in Rewriting Logic [J].
Martin, Oscar ;
Verdejo, Alberto ;
Marti-Oliet, Narciso .
THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2024, 24 (01) :57-109
[39]   COMPOSITIONAL VERIFICATION IN SUPERVISORY CONTROL [J].
Flordal, Hugo ;
Malik, Robi .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (03) :1914-1938
[40]   Verification of Concurrent Software [J].
Kroening, Daniel .
DEPENDABLE SOFTWARE SYSTEMS ENGINEERING, 2016, 45 :159-178