Hulls of codes from incidence matrices of connected regular graphs

被引:0
作者
D. Ghinelli
J. D. Key
T. P. McDonough
机构
[1] Università di Roma ‘La Sapienza’,Dipartimento di Matematica
[2] University of the Western Cape,Department of Mathematics and Applied Mathematics
[3] Aberystwyth University,Institute of Mathematics and Physics
来源
Designs, Codes and Cryptography | 2014年 / 70卷
关键词
Incidence matrix; Graph; Code; Hull; Permutation decoding; 05B05; 05C38; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
The hulls of codes from the row span over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}$$\end{document} , for any prime p, of incidence matrices of connected k-regular graphs are examined, and the dimension of the hull is given in terms of the dimension of the row span of A + kI over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}$$\end{document} , where A is an adjacency matrix for the graph. If p = 2, for most classes of connected regular graphs with some further form of symmetry, it was shown by Dankelmann et al. (Des. Codes Cryptogr. 2012) that the hull is either {0} or has minimum weight at least 2k−2. Here we show that if the graph is strongly regular with parameter set (n, k, λ, μ), then, unless k is even and μ is odd, the binary hull is non-trivial, of minimum weight generally greater than 2k − 2, and we construct words of low weight in the hull; if k is even and μ is odd, we show that the binary hull is zero. Further, if a graph is the line graph of a k-regular graph, k ≥ 3, that has an ℓ-cycle for some ℓ ≥ 3, the binary hull is shown to be non-trivial with minimum weight at most 2ℓ(k−2). Properties of the p-ary hulls are also established.
引用
收藏
页码:35 / 54
页数:19
相关论文
共 50 条
[31]   Permutation decoding of codes from generalized Paley graphs [J].
Padmapani Seneviratne ;
Jirapha Limbupasiriporn .
Applicable Algebra in Engineering, Communication and Computing, 2013, 24 :225-236
[32]   Codes from lattice and related graphs, and permutation decoding [J].
Key, J. D. ;
Rodrigues, B. G. .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (16) :1807-1815
[33]   GHWs of Codes Arising from Cartesian Product of Graphs [J].
Maimani, Hamid Reza ;
Sabet, Maryam Mohammadpour .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) :1689-1709
[34]   Permutation decoding for binary codes from lattice graphs [J].
Key, J. D. ;
Seneviratne, P. .
DISCRETE MATHEMATICS, 2008, 308 (13) :2862-2867
[35]   Permutation decoding of codes from generalized Paley graphs [J].
Seneviratne, Padmapani ;
Limbupasiriporn, Jirapha .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (3-4) :225-236
[36]   Filling in pattern designs for incomplete pairwise comparison matrices: (Quasi-)regular graphs with minimal diameter * [J].
Szadoczki, Zsombor ;
Bozoki, Sandor ;
Tekile, Hailemariam Abebe .
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2022, 107
[37]   Entanglement-assisted quantum codes from unitary matrices [J].
Mam, Mareth ;
Ezerman, Martianus Frederic ;
Ling, San ;
Sok, Lin .
QUANTUM INFORMATION PROCESSING, 2025, 24 (06)
[38]   Ternary codes from some reflexive uniform subset graphs [J].
W. Fish ;
J. D. Key ;
E. Mwambene .
Applicable Algebra in Engineering, Communication and Computing, 2014, 25 :363-382
[39]   Ternary codes from some reflexive uniform subset graphs [J].
Fish, W. ;
Key, J. D. ;
Mwambene, E. .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2014, 25 (05) :363-382
[40]   Binary codes and partial permutation decoding sets from biadjacency matrices of bipartite graphs Γ(2k, k, k+1, 1) [J].
Fish, W. ;
Mumba, N. B. ;
Mwambene, E. ;
Rodrigues, B. G. .
QUAESTIONES MATHEMATICAE, 2020, 43 (04) :523-538