Existence of a Non-Averaging Regime for the Self-Avoiding Walk on a High-Dimensional Infinite Percolation Cluster

被引:0
作者
Hubert Lacoin
机构
[1] CEREMADE,Place du Maréchal de Lattre de Tassigny
来源
Journal of Statistical Physics | 2014年 / 154卷
关键词
Percolation; Self-avoiding walk; Random media; Polymers; Disorder relevance; 82D60; 60K37; 82B44;
D O I
暂无
中图分类号
学科分类号
摘要
Let ZN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_N$$\end{document} be the number of self-avoiding paths of length N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} starting from the origin on the infinite cluster obtained after performing Bernoulli percolation on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z} ^d$$\end{document} with parameter p>pc(Zd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>p_c({\mathbb Z} ^d)$$\end{document}. The object of this paper is to study the connective constant of the dilute lattice lim supN→∞ZN1/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{N\rightarrow \infty } Z_N^{1/N}$$\end{document}, which is a non-random quantity. We want to investigate if the inequality lim supN→∞(ZN)1/N≤limN→∞E[ZN]1/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{N\rightarrow \infty } (Z_N)^{1/N} \le \lim _{N\rightarrow \infty } {\mathbb E} [Z_N]^{1/N}$$\end{document} obtained with the Borel–Cantelli Lemma is strict or not. In other words, we want to know if the quenched and annealed versions of the connective constant are equal. On a heuristic level, this indicates whether or not localization of the trajectories occurs. We prove that when d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} is sufficiently large there exists pc(2)>pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{(2)}_c>p_c$$\end{document} such that the inequality is strict for p∈(pc,pc(2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (p_c,p^{(2)}_c)$$\end{document}.
引用
收藏
页码:1461 / 1482
页数:21
相关论文
共 33 条
[1]  
Barat K(1991)Self-avoiding walk, connectivity constant and theta point on percolating lattices J. Phys. A 24 851-860
[2]  
Karmakar SN(2004)Random walks on supercritical percolation clusters Ann. Probab. 32 3024-3084
[3]  
Chakrabarti BK(2004)A condition for weak disorder for directed polymers in random environment Electron. Commun. Probab. 9 22-25
[4]  
Barlow MT(1981)The statistics of self-avoiding walks on a disordered lattice Z. Phys. B Condens. Mat. 44 221-223
[5]  
Birkner M(1984)The statistics of self-avoiding walks on random lattices Z. Phys. B Condens. Mat. 55 131-136
[6]  
Chakrabarti BK(2004)Probabilistic analysis of directed polymers in a random environment: a review Adv. Stud. Pure Math. 39 115-142
[7]  
Kertsz J(2003)Directed polymers in a random environment: path localization and strong disorder Bernoulli 9 705-723
[8]  
Chakrabarti BK(1959)Excluded-volume problem and the Ising model of ferromagnetism Phys. Rev. 114 45-58
[9]  
Roy AK(1949)The configuration of a real polymer chain J. Chem. Phys. 17 303-310
[10]  
Comets F(1995)The self-avoiding-walk and percolation critical points in high dimensions Comb. Probab. Comput. 4 197-215