Strong coupling expansion for the conformal Pomeron/Odderon trajectories

被引:0
作者
Richard C. Brower
Miguel S. Costa
Marko Djurić
Timothy Raben
Chung-I Tan
机构
[1] Boston University,Physics Department
[2] Faculdade Ciências da Universidade do Porto,Centro de Física do Porto, Departamento de Física e Astronomia
[3] Brown University,Physics Department
来源
Journal of High Energy Physics | / 2015卷
关键词
Gauge-gravity correspondence; AdS-CFT Correspondence; Strong Coupling Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
From the perspective of AdS/CFT the Pomeron is identified with a Reggeized Graviton, while the Odderons correspond to Reggeized anti-symmetric AdS5 Kalb-Ramond tensor-fields. In this paper, we consider the strong coupling expansion of the dimension of the leading twist operators dual to these Regge trajectories, Δ(j), to determine its analytic continuation in j beyond the diffusion limit. In particular, we compute the strong coupling expansion of the intercept to order λ−3, where λ is the t’Hooft coupling, for both the Pomeron, which is C = +1 crossing-even, and the “Odderons”, which are the leading C = −1 crossing-odd Regge singularities. We discuss the spectral curves of the class of single-trace operators to which these string modes couple.
引用
收藏
相关论文
共 148 条
[61]  
Cornalba L(undefined)Wrapping corrections, reciprocity and BFKL beyond the sl(2) subsector in N = 4 SYM undefined undefined undefined-undefined
[62]  
Costa MS(undefined)Fine structure of anomalous dimensions in N = 4 super Yang-Mills theory undefined undefined undefined-undefined
[63]  
Penedones J(undefined)undefined undefined undefined undefined-undefined
[64]  
Cornalba L(undefined)undefined undefined undefined undefined-undefined
[65]  
Costa MS(undefined)undefined undefined undefined undefined-undefined
[66]  
Penedones J(undefined)undefined undefined undefined undefined-undefined
[67]  
Schiappa R(undefined)undefined undefined undefined undefined-undefined
[68]  
Minahan JA(undefined)undefined undefined undefined undefined-undefined
[69]  
Zarembo K(undefined)undefined undefined undefined undefined-undefined
[70]  
Beisert N(undefined)undefined undefined undefined undefined-undefined