Inclusive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^*$\end{document} production in photon-photon collisions at next-to-leading order QCD}

被引:0
|
作者
G. Kramer
H. Spiesberger
机构
[1] II. Institut für Theoretische Physik,
[2] Universität Hamburg,undefined
[3] Luruper Chaussee 149,undefined
[4] 22761 Hamburg,undefined
[5] Germany,undefined
[6] Insitut für Physik,undefined
[7] Johannes-Gutenberg-Universität,undefined
[8] Staudinger Weg 7,undefined
[9] 55099 Mainz,undefined
[10] Germany,undefined
来源
The European Physical Journal C - Particles and Fields | 2001年 / 22卷 / 2期
关键词
Transverse Momentum; Fragmentation Function; Equal Footing; Charm Quark; Inclusive Cross Section;
D O I
10.1007/s100520100805
中图分类号
学科分类号
摘要
The next-to-leading order cross section for the inclusive production of charm quarks in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma \gamma $\end{document} collisions is calculated as a function of the transverse momentum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_T$\end{document} and the rapidity y in approaches using massive or massless charm quarks. For the direct cross section we derive the massless limit from the massive theory with the result that this limit differs from the massless version with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{MS}$\end{document} factorization by finite corrections. Subtracting or adding these corrections allows us to compare the two approaches on equal footing. We establish massless and massive versions with 3 and 4 initial flavours which are shown to approach the massless approximations very fast with increasing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_T$\end{document}. With these results we calculate the inclusive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{*\pm}$\end{document} cross section in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma \gamma $\end{document} collisions using realistic evolved fragmentation functions with appropriate factorization scales and compare with recent data for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d\sigma/dp_T$\end{document} from three LEP collaborations after single- and double-resolved contributions have been added.
引用
收藏
页码:289 / 301
页数:12
相关论文
共 50 条