A systematic review of annotation for surgical process model analysis in minimally invasive surgery based on video

被引:0
作者
Krystel Nyangoh Timoh
Arnaud Huaulme
Kevin Cleary
Myra A. Zaheer
Vincent Lavoué
Dan Donoho
Pierre Jannin
机构
[1] CHU Rennes,Department of Gynecology and Obstetrics and Human Reproduction
[2] University Rennes 1,INSERM, LTSI
[3] Centre Hospitalier Universitaire de Rennes, UMR 1099
[4] Children’s National Hospital,Laboratoire d’Anatomie et d’Organogenèse, Faculté de Médecine
[5] George Washington University School of Medicine and Health Sciences,Sheikh Zayed Institute for Pediatric Surgical Innovation
[6] Children’s National Hospital,Division of Neurosurgery, Center for Neuroscience
[7] Rennes Hospital,Department of Obstetrics and Gynecology
来源
Surgical Endoscopy | 2023年 / 37卷
关键词
Surgical data science; Ontology; Surgical process model; Annotation; Surgical video; Minimally invasive surgery;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4298 / 4314
页数:16
相关论文
共 492 条
[21]  
Hashizume M(2016)Automatic data-driven real-time segmentation and recognition of surgical workflow Int J Comput Assist Radiol Surg 59 101572-4931
[22]  
Heckmann-Nötzel D(2020)Multi-task recurrent convolutional network with correlation loss for surgical video analysis Med Image Anal 15 673-1209
[23]  
Kenngott HG(2020)Assisted phase and step annotation for surgical videos Int J Comput Assist Radiol Surg 16 1111-6157
[24]  
Kikinis R(2021)Multi-task temporal convolutional networks for joint recognition of surgical phases and steps in gastric bypass procedures Int J Comput Assist Radiol Surg 73 102158-386
[25]  
Mündermann L(2021)Semi-supervised learning with progressive unlabeled data excavation for label-efficient surgical workflow recognition Med Image Anal 36 86-2360
[26]  
Navab N(2017)EndoNet: a deep architecture for recognition tasks on laparoscopic videos IEEE Trans Med Imaging 38 1069-2036
[27]  
Onogur S(2019)RSDNet: learning to predict remaining surgery duration from laparoscopic videos without manual annotations IEEE Trans Med Imaging 33 1426-477
[28]  
Roß T(2019)Surgical phase modelling in minimal invasive surgery Surg Endosc 34 4924-1671
[29]  
Sznitman R(2020)Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach Surg Endosc 11 1201-888
[30]  
Taylor RH(2016)System events: readily accessible features for surgical phase detection Int J Comput Assist Radiol Surg 35 6150-e95