MultiVI: deep generative model for the integration of multimodal data

被引:0
|
作者
Tal Ashuach
Mariano I. Gabitto
Rohan V. Koodli
Giuseppe-Antonio Saldi
Michael I. Jordan
Nir Yosef
机构
[1] University of California,Center for Computational Biology
[2] University of California,Department of Electrical Engineering and Computer Sciences
[3] University of California,Department of Statistics
[4] Berkeley,Department of Systems Immunology
[5] Allen Institute for Brain Science,undefined
[6] Weizmann Institute of Science,undefined
来源
Nature Methods | 2023年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Jointly profiling the transcriptome, chromatin accessibility and other molecular properties of single cells offers a powerful way to study cellular diversity. Here we present MultiVI, a probabilistic model to analyze such multiomic data and leverage it to enhance single-modality datasets. MultiVI creates a joint representation that allows an analysis of all modalities included in the multiomic input data, even for cells for which one or more modalities are missing. It is available at scvi-tools.org.
引用
收藏
页码:1222 / 1231
页数:9
相关论文
共 50 条
  • [21] multiDGD: A versatile deep generative model for multi-omics data
    Schuster, Viktoria
    Dann, Emma
    Krogh, Anders
    Teichmann, Sarah A.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [22] A Deep Web Data Integration Model for Pervasive Computing
    Yan, Zhongmin
    Li, Qingzhong
    Dong, Yongquan
    Cao, Luhui
    Pan, Peng
    2008 3RD INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND APPLICATIONS, VOLS 1 AND 2, 2008, : 416 - 419
  • [23] Survey on Deep Generative Model
    Hu, Ming-Fei
    Zuo, Xin
    Liu, Jian-Wei
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (01): : 40 - 74
  • [24] Deep Multimodal Data Fusion
    Zhao, Fei
    Zhang, Chengcui
    Geng, Baocheng
    ACM COMPUTING SURVEYS, 2024, 56 (09)
  • [25] Multimodal data integration using deep learning predicts overall survival of patients with glioma
    Yuan, Yifan
    Zhang, Xuan
    Wang, Yining
    Li, Hongyan
    Qi, Zengxin
    Du, Zunguo
    Chu, Ying-Hua
    Feng, Danyang
    Hu, Jie
    Xie, Qingguo
    Song, Jianping
    Liu, Yuqing
    Cai, Jiajun
    VIEW, 2024, 5 (05)
  • [26] Multimodal and multicontrast image fusion via deep generative models
    Dimitri, Giovanna Maria
    Spasov, Simeon
    Duggento, Andrea
    Passamonti, Luca
    Lio, Pietro
    Toschi, Nicola
    INFORMATION FUSION, 2022, 88 : 146 - 160
  • [27] Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models
    Saeedi, Ardavan
    Hoffman, Matthew D.
    DiVerdi, Stephen J.
    Ghandeharioun, Asma
    Johnson, Matthew J.
    Adams, Ryan P.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [28] Deep generative models for multimodal MRI conversion in multiple sclerosis
    Vivo Pascual, Francesc
    Solana, Elisabeth
    Kanber, Baris
    Calvi, Alberto
    Lopez-Soley, Elisabet
    Cabrera Maqueda, Jose Maria
    Alba-Arbalat, Salut
    Sepulveda, Maria
    Blanco, Yolanda
    Saiz, Albert
    Prados, Ferran
    Llufriu, Sara
    Martinez-Heras, Eloy
    MULTIPLE SCLEROSIS JOURNAL, 2024, 30 (03) : 538 - 539
  • [29] Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models
    Chen, Phil
    Itkina, Masha
    Senanayake, Ransalu
    Kochenderfer, Mykel J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [30] Multimodal Person Verification With Generative Thermal Data Augmentation
    Abdrakhmanova, Madina
    Unaspekov, Timur
    Varol, Huseyin Atakan
    IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, 2024, 6 (01): : 43 - 53