MultiVI: deep generative model for the integration of multimodal data

被引:0
|
作者
Tal Ashuach
Mariano I. Gabitto
Rohan V. Koodli
Giuseppe-Antonio Saldi
Michael I. Jordan
Nir Yosef
机构
[1] University of California,Center for Computational Biology
[2] University of California,Department of Electrical Engineering and Computer Sciences
[3] University of California,Department of Statistics
[4] Berkeley,Department of Systems Immunology
[5] Allen Institute for Brain Science,undefined
[6] Weizmann Institute of Science,undefined
来源
Nature Methods | 2023年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Jointly profiling the transcriptome, chromatin accessibility and other molecular properties of single cells offers a powerful way to study cellular diversity. Here we present MultiVI, a probabilistic model to analyze such multiomic data and leverage it to enhance single-modality datasets. MultiVI creates a joint representation that allows an analysis of all modalities included in the multiomic input data, even for cells for which one or more modalities are missing. It is available at scvi-tools.org.
引用
收藏
页码:1222 / 1231
页数:9
相关论文
共 50 条
  • [1] MultiVI: deep generative model for the integration of multimodal data
    Ashuach, Tal
    Gabitto, Mariano I.
    Koodli, Rohan V.
    Saldi, Giuseppe-Antonio
    Jordan, Michael I.
    Yosef, Nir
    NATURE METHODS, 2023, 20 (08) : 1222 - +
  • [2] A deep multimodal generative and fusion framework for class-imbalanced multimodal data
    Li, Qing
    Yu, Guanyuan
    Wang, Jun
    Liu, Yuehao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (33-34) : 25023 - 25050
  • [3] A deep multimodal generative and fusion framework for class-imbalanced multimodal data
    Qing Li
    Guanyuan Yu
    Jun Wang
    Yuehao Liu
    Multimedia Tools and Applications, 2020, 79 : 25023 - 25050
  • [4] InClust+: the deep generative framework with mask modules for multimodal data integration, imputation, and cross-modal generation
    Lifei Wang
    Rui Nie
    Xuexia Miao
    Yankai Cai
    Anqi Wang
    Hanwen Zhang
    Jiang Zhang
    Jun Cai
    BMC Bioinformatics, 25
  • [5] InClust plus : the deep generative framework with mask modules for multimodal data integration, imputation, and cross-modal generation
    Wang, Lifei
    Nie, Rui
    Miao, Xuexia
    Cai, Yankai
    Wang, Anqi
    Zhang, Hanwen
    Zhang, Jiang
    Cai, Jun
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [6] A survey of multimodal deep generative models
    Suzuki, Masahiro
    Matsuo, Yutaka
    Advanced Robotics, 2022, 36 (5-6): : 261 - 278
  • [7] A survey of multimodal deep generative models
    Suzuki, Masahiro
    Matsuo, Yutaka
    ADVANCED ROBOTICS, 2022, 36 (5-6) : 261 - 278
  • [8] Deep Generative Imputation Model for Missing Not At Random Data
    Chen, Jialei
    Xu, Yuanbo
    Wang, Pengyang
    Yang, Yongjian
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 316 - 325
  • [9] Multimodal data integration for oncology in the era of deep neural networks: a review
    Waqas, Asim
    Tripathi, Aakash
    Ramachandran, Ravi P.
    Stewart, Paul A.
    Rasool, Ghulam
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [10] Deep Generative Design: Integration of Topology Optimization and Generative Models
    Oh, Sangeun
    Jung, Yongsu
    Kim, Seongsin
    Lee, Ikjin
    Kang, Namwoo
    JOURNAL OF MECHANICAL DESIGN, 2019, 141 (11)