On dark matter as a geometric effect in the galactic halo

被引:0
作者
Ugur Camci
机构
[1] Roger Williams University,Department of Chemistry and Physics
来源
Astrophysics and Space Science | 2021年 / 366卷
关键词
Dark matter; Modified gravity; Galaxies; Halos; Flat rotation curves;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain more straightforwardly some features of dark matter distribution in the halos of galaxies by considering the spherically symmetric space-time, which satisfies the flat rotational curve condition, and the geometric equation of state resulting from the modified gravity theory. In order to measure the equation of state for dark matter in the galactic halo, we provide a general formalism taking into account the modified f(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(X)$\end{document} gravity theories. Here, f(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(X)$\end{document} is a general function of X∈{R,G,T}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X \in \{ R, \mathcal{G}, T \}$\end{document}, where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R$\end{document}, G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}$\end{document} and T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T$\end{document} are the Ricci scalar, the Gauss-Bonnet scalar and the torsion scalar, respectively. These theories yield that the flat rotation curves appear as a consequence of the additional geometric structure accommodated by those of modified gravity theories. Constructing a geometric equation of state wX≡pX/ρX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{{X}} \equiv p_{{X}} / \rho _{{X}}$\end{document} and inspiring by some values of the equation of state for the ordinary matter, we infer some properties of dark matter in galactic halos of galaxies.
引用
收藏
相关论文
共 58 条
  • [1] Ackerman L.(2009)Dark matter and dark radiation Phys. Rev. D 79 1462-undefined
  • [2] Buckley M.R.(2003)Galactic halos of fluid dark matter Phys. Rev. D 68 68-undefined
  • [3] Carroll S.M.(2019)Exact spherically symmetric solutions in modified teleparallel gravity Symmetry 11 93-undefined
  • [4] Kamionkowski M.(2020)Exact spherically symmetric solutions in modified Gauss-Bonnet gravity from Noether symmetry approach Symmetry 12 386-undefined
  • [5] Arbey A.(2020)Solar system tests in modified teleparallel gravity J. Cosmol. Astropart. Phys. 10 1423-undefined
  • [6] Lesgourgues J.(2003)Modeling galaxy halos using dark matter with pressure Phys. Rev. D 68 2153-undefined
  • [7] Salati P.(2001)Halo formation in warm dark matter models Astrophys. J. 556 125-undefined
  • [8] Bahamonde S.(2008)Dark matter as a geometric effect in Astropart. Phys. 29 560-undefined
  • [9] Camci U.(2007) gravity Mon. Not. R. Astron. Soc. 375 94-undefined
  • [10] Bahamonde S.(2007)Low surface brightness galaxy rotation curves in the low energy limit of Class. Quantum Gravity 24 1707-undefined