Microstructural Development and Ternary Interdiffusion in Ni-Mn-Ga Alloys

被引:0
|
作者
Le Zhou
Catherine Kammerer
Anit Giri
Kyu Cho
Yongho Sohn
机构
[1] University of Central Florida,Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center
[2] TKC Global (Contractor to US Army Research Laboratory),Weapons and Materials Research Directorate
[3] US Army Research Laboratory,undefined
[4] Aerojet Rocketdyne,undefined
来源
Metallurgical and Materials Transactions A | 2015年 / 46卷
关键词
Martensite; Shape Memory Alloy; Diffusion Couple; Martensitic Phase; Interdiffusion Coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
NiMnGa alloys functioning as either ferromagnetic shape memory alloys or magnetocaloric materials have both practical applications and fundamental research value. In this study, solid-to-solid diffusion couple experiments were carried out to investigate the phase equilibria, microstructural development, and interdiffusion behavior in Ni-Mn-Ga ternary alloys. Selected diffusion couples between pure Ni, Ni25Mn75 and four ternary off-stoichiometric NiMnGa alloys (i.e., Ni52Mn18Ga30, Ni46Mn30Ga24, Ni52Mn30Ga18, Ni58Mn18Ga24) were assembled and annealed at 1073 K, 1123 K, and 1173 K (800 °C, 850 °C, and 900 °C) for 480, 240, and 120 hours, respectively. At these high temperatures, the β NiMnGa phase has a B2 crystal structure. The microstructure of the interdiffusion zone was examined by scanning electron microscopy and transmission electron microscopy. Concentration profiles across the interdiffusion zone were determined by electron probe micro analysis. Solubility values obtained for various phases were mostly consistent with the existing isothermal phase diagrams, but the phase boundary of the γ(Mn) + β two-phase region was slightly modified. In addition, equilibrium compositions for the γ(Ni) and α′ phases at 1173 K (900 °C) were also determined for the respective two-phase region. Both austenitic and martensitic phases were found at room temperature in each diffusion couple with a clear boundary. The compositions at the interfaces corresponded close to valence electron concentration (e/a) of 7.6, but trended to lower values when Mn increased to more than 35 at. pct. Average effective interdiffusion coefficients for the β phase over different compositional ranges were determined and reported in the light of temperature-dependence. Ternary interdiffusion coefficients were also determined and examined to assess the ternary diffusional interactions among Ni, Mn, and Ga. Ni was observed to interdiffuse the fastest, followed by Mn then Ga. Interdiffusion flux of Ni also has strong influences on the interdiffusion of Mn and Ga with large and negative cross interdiffusion coefficients, D~MnNiGa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{D}_{MnNi}^{Ga} $$\end{document} and D~GaNiMn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{D}_{GaNi}^{Mn} $$\end{document}. The D~NiNiGa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{D}_{NiNi}^{Ga} $$\end{document} and D~MnMnGa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{D}_{MnMn}^{Ga} $$\end{document} ternary interdiffusion coefficients exhibited minimum values near 52 at. pct Ni concentration.
引用
收藏
页码:5572 / 5587
页数:15
相关论文
共 50 条
  • [1] Influence of Site Occupancy on the Structure, Microstructure and Magnetic Properties of Ternary and Quasi-ternary Alloys of Ni-Mn-Ga
    Seshubai, V.
    Kumar, A. Satish
    Ramudu, M.
    FUNCTIONAL MATERIALS-BOOK, 2012, 1461 : 74 - 86
  • [2] Thermal and microstructural evolution under ageing of several high-temperature Ni-Mn-Ga alloys
    Santamarta, R.
    Cesari, E.
    Muntasell, J.
    Font, J.
    Pons, J.
    Ochin, P.
    INTERMETALLICS, 2010, 18 (05) : 977 - 983
  • [3] Mechanical anomaly observed in Ni-Mn-Ga alloys by nanoindentation
    Zhou, Le
    Giri, Anit
    Cho, Kyu
    Sohn, Yongho
    ACTA MATERIALIA, 2016, 118 : 54 - 63
  • [4] Low temperature crystal structure of Ni-Mn-Ga alloys
    Wedel, B
    Suzuki, M
    Murakami, Y
    Wedel, C
    Suzuki, T
    Shindo, D
    Itagaki, K
    JOURNAL OF ALLOYS AND COMPOUNDS, 1999, 290 (1-2) : 137 - 143
  • [5] Effects of Sm on phase transformation in Ni-Mn-Ga alloys
    Guo, SH
    Zhang, YH
    Zhao, ZQ
    Qi, Y
    Quan, BY
    Wang, XL
    JOURNAL OF RARE EARTHS, 2004, 22 (06) : 875 - 877
  • [6] Effects of Sm on Phase Transformation in Ni-Mn-Ga Alloys
    郭世海
    张羊换
    赵增祺
    祁焱
    全白云
    王新林
    JournalofRareEarths, 2004, (06) : 875 - 877
  • [7] Application of EBSD to the crystallographic investigation on Ni-Mn-Ga alloys
    Li, Zongbin
    Zhang, Yudong
    Esling, Claude
    Yang, Hao
    Wang, Jijie
    He, Changshu
    Zhao, Xiang
    Zuo, Liang
    THERMEC 2011, PTS 1-4, 2012, 706-709 : 1879 - +
  • [8] Effect of gallium alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni-Mn-Ga alloys
    Belosludtseva, E. S.
    Kuranova, N. N.
    Marchenkova, E. B.
    Popov, A. G.
    Pushin, V. G.
    TECHNICAL PHYSICS, 2016, 61 (04) : 547 - 553
  • [9] Ni-Mn-Ga high-temperature shape memory alloys
    Xu, H. B.
    Li, Y.
    Jiang, C. B.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 438 (SPEC. ISS.): : 1065 - 1070
  • [10] Model of colossal magnetostriction in the martensite phase of Ni-Mn-Ga alloys
    V. D. Buchel’nikov
    V. S. Romanov
    A. N. Vasil’ev
    T. Takagi
    V. G. Shavrov
    Journal of Experimental and Theoretical Physics, 2001, 93 : 1302 - 1306