An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems

被引:11
作者
Boţ R.I. [1 ]
Csetnek E.R. [1 ]
Nimana N. [2 ]
机构
[1] Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna
[2] Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok
基金
奥地利科学基金会;
关键词
Fenchel conjugate; Inertial algorithm; Penalization; Proximal-gradient algorithm;
D O I
10.1007/s10013-017-0256-9
中图分类号
学科分类号
摘要
We propose a proximal-gradient algorithm with penalization terms and inertial and memory effects for minimizing the sum of a proper, convex, and lower semicontinuous and a convex differentiable function subject to the set of minimizers of another convex differentiable function. We show that, under suitable choices for the step sizes and the penalization parameters, the generated iterates weakly converge to an optimal solution of the addressed bilevel optimization problem, while the objective function values converge to its optimal objective value. © 2017, The Author(s).
引用
收藏
页码:53 / 71
页数:18
相关论文
共 41 条
  • [1] Alvarez F., On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control. Optim., 38, pp. 1102-1119, (2000)
  • [2] Alvarez F., Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14, pp. 773-782, (2004)
  • [3] Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9, pp. 3-11, (2001)
  • [4] Attouch H., Cabot A., Czarnecki M.-O., Asymptotic behavior of nonautonomous monotone and subgradient evolution equations. Trans. Am. Math. Soc, (2016)
  • [5] Attouch H., Czarnecki M.-O., Asymptotic behavior of coupled dynamical systems with multiscale aspects, J. Differ. Equ., 248, pp. 1315-1344, (2010)
  • [6] Attouch H., Czarnecki M.-O., Asymptotic behavior of gradient-like dynamical systems involving inertia and multiscale aspects, J. Differ. Equ., 262, pp. 2745-2770, (2017)
  • [7] Attouch H., Czarnecki M.-O., Peypouquet J., Prox-penalization and splitting methods for constrained variational problems, SIAM J. Optim., 21, pp. 149-173, (2011)
  • [8] Attouch H., Czarnecki M.-O., Peypouquet J., Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities, SIAM J. Optim., 21, pp. 1251-1274, (2011)
  • [9] Attouch H., Peypouquet J., The rate of convergence of Nesterov’s accelerated forward-backward method is actually faster than 1/k2, SIAM J. Optim., 26, pp. 1824-1834, (2016)
  • [10] Attouch H., Peypouquet J., Redont P., A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 24, pp. 232-256, (2014)