Dynamic resource allocation drives growth under nitrogen starvation in eukaryotes

被引:0
作者
Juan D. Tibocha-Bonilla
Manish Kumar
Anne Richelle
Rubén D. Godoy-Silva
Karsten Zengler
Cristal Zuñiga
机构
[1] University of California,Bioinformatics and Systems Biology Graduate Program
[2] San Diego,Department of Pediatrics
[3] University of California,Grupo de Investigación en Procesos Químicos y Bioquímicos, Departamento de Ingeniería Química y Ambiental
[4] San Diego,Department of Bioengineering
[5] Universidad Nacional de Colombia,Center for Microbiome Innovation
[6] University of California,undefined
[7] San Diego,undefined
[8] University of California,undefined
[9] San Diego,undefined
来源
npj Systems Biology and Applications | / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cells can sense changes in their extracellular environment and subsequently adapt their biomass composition. Nutrient abundance defines the capability of the cell to produce biomass components. Under nutrient-limited conditions, resource allocation dramatically shifts to carbon-rich molecules. Here, we used dynamic biomass composition data to predict changes in growth and reaction flux distributions using the available genome-scale metabolic models of five eukaryotic organisms (three heterotrophs and two phototrophs). We identified temporal profiles of metabolic fluxes that indicate long-term trends in pathway and organelle function in response to nitrogen depletion. Surprisingly, our calculations of model sensitivity and biosynthetic cost showed that free energy of biomass metabolites is the main driver of biosynthetic cost and not molecular weight, thus explaining the high costs of arginine and histidine. We demonstrated how metabolic models can accurately predict the complexity of interwoven mechanisms in response to stress over the course of growth.
引用
收藏
相关论文
共 108 条
  • [11] Shang F(2017) using industrial by-products under different culture conditions Phaeodactylum tricornutum 368 363-368
  • [12] Yan G(2013)Chemical composition and physicochemical properties of J. Phycol. 49 937-949
  • [13] Rakicka M(2013) microalgal residual biomass Nature 500 301-306
  • [14] Lazar Z(2019)On the chemical composition of eleven species of marine phytoplankters Nat. Microbiol. 4 2184-2191
  • [15] Dulermo T(2018)Changes in the fatty acid composition of Biotechnol. Biofuels 11 D515-D522
  • [16] Fickers P(2016) and Nucleic Acids Res. 44 245-248
  • [17] Nicaud JM(2010) during growth and under phosphorus deficiency Nat. Biotechnol. 28 335-366
  • [18] German-Báez L(2018)Fatty acid and lipid class composition of the microalga J. CO2 Util. 28 434-443.e8
  • [19] Parsons TR(2016)Characterization of the extracellular matrix of Cell Syst. 3 e00142-16
  • [20] Stephens K(2016) ( npj Syst. Biol. Appl. 2 1-17