Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network

被引:0
|
作者
Mingxuan Liang
Pei Cao
J. Tang
机构
[1] China Jiliang University,College of Mechanical and Electrical Engineering
[2] University of Connecticut,Department of Mechanical Engineering
来源
The International Journal of Advanced Manufacturing Technology | 2021年 / 112卷
关键词
Fault identification; Parallel convolutional network; Wavelet; Reduced dataset; Rolling bearing;
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning has seen increased application in the data-driven fault diagnosis of manufacturing system components such as rolling bearing. However, deep learning methods often require a large amount of training data. This is a major barrier in particular for bearing datasets whose sizes are generally limited due to the high costs of data acquisition especially for fault scenarios. When small datasets are employed, over-fitting may occur for a deep learning network with many parameters. To tackle this challenge, in this research, we propose a new methodology of parallel convolutional neural network (P-CNN) for bearing fault identification that is capable of feature fusion. Raw vibration signals in the time domain are divided into non-overlapping training data slices, and two different convolutional neural network (CNN) branches are built in parallel to extract features in the time domain and in the time-frequency domain, respectively. Subsequently, in the merged layer, the time-frequency features extracted by continuous wavelet transform (CWT) are fused together with the time-domain features as inputs to the final classifier, thereby enriching feature information and improving network performance. By incorporating empirical feature extraction such as CWT, this proposed method can effectively enable deep learning even with dataset size limitation in practical bearing diagnosis. The algorithm is validated through case studies on publicly accessible experimental rolling bearing datasets. A wide range of dataset sizes is tested with cross-validation, and influencing factors on network performance are discussed. Compared with existing methods, the proposed approach not only possesses higher accuracy but also exhibits better stability and robustness as training dataset sizes and load conditions vary. The concept of feature fusion through P-CNN can be extended to other fault diagnosis applications in manufacturing systems.
引用
收藏
页码:819 / 831
页数:12
相关论文
共 50 条
  • [41] A new fault diagnosis of rolling bearing based on phase-space reconstruction and convolutional neural network
    Wang, Mengjiao
    Ding, Liting
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2023, 75 (08) : 875 - 882
  • [42] Rolling bearing composite fault diagnosis method based on eemd fusion feature
    Zhao, Yixin
    Fan, Yao
    Li, Hu
    Gao, Xuejin
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (09) : 4563 - 4570
  • [43] Rolling bearing composite fault diagnosis method based on EEMD fusion feature
    Yixin Zhao
    Yao Fan
    Hu Li
    Xuejin Gao
    Journal of Mechanical Science and Technology, 2022, 36 : 4563 - 4570
  • [44] Fault Diagnosis of Rolling Bearing Using Wireless Sensor Networks and Convolutional Neural Network
    Hou, Liqun
    Li, Zijing
    Qu, Huaisheng
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (11) : 32 - 44
  • [45] Rolling bearing fault diagnosis method based on ELMD hybrid feature extraction and wavelet neural network
    Yue, Hengxin
    Chen, Xihui
    Shi, Xinhui
    Lou, Wei
    JOURNAL OF VIBROENGINEERING, 2023, 25 (06) : 1083 - 1095
  • [46] A Robust Fault Diagnosis Method for Rolling Bearings Based on Deep Convolutional Neural Network
    Li, Zhenxiang
    Zheng, Taisheng
    Yang, Wang
    Fu, Hongyong
    Wu, Wenbo
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [47] Rolling Bearing Fault Diagnosis Based on Graph Convolution Neural Network
    Zhang, Yin
    Li, Hui
    INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I, 2022, 13393 : 195 - 207
  • [48] Fault Diagnosis of Rolling Bearing Based on Rough Set and Neural Network
    Yan Jun-rong
    Min Yong
    Cui Xia
    Huang Yan
    INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS II, PTS 1-3, 2011, 58-60 : 974 - +
  • [49] Fault Diagnosis for Rolling Bearing Based on Deep Residual Neural Network
    Sun, Yi
    Gao, Hongli
    Hong, Xin
    Song, Hongliang
    Liu, Qi
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 421 - 425
  • [50] Fault Diagnosis Method of Rolling Bearing Based on BP Neural Network
    Huang Zhonghua
    Xie Ya
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 647 - 649