Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network

被引:0
|
作者
Mingxuan Liang
Pei Cao
J. Tang
机构
[1] China Jiliang University,College of Mechanical and Electrical Engineering
[2] University of Connecticut,Department of Mechanical Engineering
来源
The International Journal of Advanced Manufacturing Technology | 2021年 / 112卷
关键词
Fault identification; Parallel convolutional network; Wavelet; Reduced dataset; Rolling bearing;
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning has seen increased application in the data-driven fault diagnosis of manufacturing system components such as rolling bearing. However, deep learning methods often require a large amount of training data. This is a major barrier in particular for bearing datasets whose sizes are generally limited due to the high costs of data acquisition especially for fault scenarios. When small datasets are employed, over-fitting may occur for a deep learning network with many parameters. To tackle this challenge, in this research, we propose a new methodology of parallel convolutional neural network (P-CNN) for bearing fault identification that is capable of feature fusion. Raw vibration signals in the time domain are divided into non-overlapping training data slices, and two different convolutional neural network (CNN) branches are built in parallel to extract features in the time domain and in the time-frequency domain, respectively. Subsequently, in the merged layer, the time-frequency features extracted by continuous wavelet transform (CWT) are fused together with the time-domain features as inputs to the final classifier, thereby enriching feature information and improving network performance. By incorporating empirical feature extraction such as CWT, this proposed method can effectively enable deep learning even with dataset size limitation in practical bearing diagnosis. The algorithm is validated through case studies on publicly accessible experimental rolling bearing datasets. A wide range of dataset sizes is tested with cross-validation, and influencing factors on network performance are discussed. Compared with existing methods, the proposed approach not only possesses higher accuracy but also exhibits better stability and robustness as training dataset sizes and load conditions vary. The concept of feature fusion through P-CNN can be extended to other fault diagnosis applications in manufacturing systems.
引用
收藏
页码:819 / 831
页数:12
相关论文
共 50 条
  • [31] Intelligent Fault Diagnosis of Rolling Element Bearing Based on Convolutional Neural Network and Frequency Spectrograms
    Liang, Pengfei
    Deng, Chao
    Wu, Jun
    Yang, Zhixin
    Zhu, Jinxuan
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [32] Method to improve convolutional neural network in rolling bearing fault diagnosis with multi-state feature information
    Zhou C.-L.
    Dong S.-J.
    Li L.
    Tang B.-P.
    He K.
    Mu S.-F.
    Zhang X.-T.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (04): : 854 - 860
  • [33] A rolling bearing fault diagnosis method based on a convolutional neural network with frequency attention mechanism
    Zhou, Hui
    Liu, Runda
    Li, Yaxin
    Wang, Jiacheng
    Xie, Suchao
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2475 - 2495
  • [34] A fault diagnosis method for rolling bearing based on gram matrix and multiscale convolutional neural network
    Zhang, Xinyan
    Cai, Shaobin
    Cai, Wanchen
    Mo, Yuchang
    Wei, Liansuo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Rolling Bearing Fault Diagnosis based on Continuous Wavelet Transform and Transfer Convolutional Neural Network
    Lai, Yuehua
    Chen, Jianxun
    Wang, Ganlong
    Wang, Zeshen
    Miao, Pu
    2021 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, INFORMATION AND COMMUNICATION ENGINEERING, 2021, 11933
  • [36] Rolling Bearing Fault Diagnosis Based on BP Neural Network
    Yu, Chenglong
    Wang, Hongjun
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 576 - 595
  • [37] Fault diagnosis of rolling bearing based on BSA neural network
    Du Wenliao
    Huang Chang
    Li Ansheng
    Gong Xiaoyun
    Wang Liangwen
    Wang Zhiyang
    2015 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE), 2015, : 424 - 427
  • [38] Interpretable parallel channel encoding convolutional neural network for bearing fault diagnosis
    Tong, Qingbin
    Du, Shouxin
    Jiang, Xuedong
    Lu, Feiyu
    Feng, Ziwei
    Liu, Ruifang
    Xu, Jianjun
    Huo, Jingyi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (06)
  • [39] Intelligent fault diagnosis method of rolling bearing based on stacked denoising autoencoder and convolutional neural network
    Che Changchang
    Wang Huawei
    Ni Xiaomei
    Fu Qiang
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2020, 72 (07) : 947 - 953
  • [40] VKCNN: An interpretable variational kernel convolutional neural network for rolling bearing fault diagnosis
    Chen, Guangyi
    Tang, Gang
    Zhu, Zhixiao
    ADVANCED ENGINEERING INFORMATICS, 2024, 62