Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample Covariance Matrices

被引:0
作者
A. Lytova
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] Opole University,Institute of Mathematics and Informatics
来源
Journal of Theoretical Probability | 2018年 / 31卷
关键词
Random matrices; Sample covariance matrices; Central Limit Theorem; Linear eigenvalue statistics; 15B52; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
For k,m,n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k,m,n\in {\mathbb {N}}$$\end{document}, we consider nk×nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^k\times n^k$$\end{document} random matrices of the form Mn,m,k(y)=∑α=1mταYαYαT,Yα=yα(1)⊗⋯⊗yα(k),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$\end{document}where τα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _{\alpha }$$\end{document}, α∈[m]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [m]$$\end{document}, are real numbers and yα(j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {y}}_\alpha ^{(j)}$$\end{document}, α∈[m]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [m]$$\end{document}, j∈[k]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in [k]$$\end{document}, are i.i.d. copies of a normalized isotropic random vector y∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {y}}\in {\mathbb {R}}^n$$\end{document}. For every fixed k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, if the Normalized Counting Measures of {τα}α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\tau _{\alpha }\}_{\alpha }$$\end{document} converge weakly as m,n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\rightarrow \infty $$\end{document}, m/nk→c∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m/n^k\rightarrow c\in [0,\infty )$$\end{document} and y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {y}}$$\end{document} is a good vector in the sense of Definition 1.1, then the Normalized Counting Measures of eigenvalues of Mn,m,k(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_{n,m,k}({\mathbf {y}})$$\end{document} converge weakly in probability to a nonrandom limit found in Marchenko and Pastur (Math USSR Sb 1:457–483, 1967). For k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document}, we define a subclass of good vectors y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {y}}$$\end{document} for which the centered linear eigenvalue statistics n-1/2Trφ(Mn,m,2(y))∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{-1/2}{{\mathrm{Tr}}}\varphi ({\mathcal {M}}_{n,m,2}({\mathbf {y}}))^\circ $$\end{document} converge in distribution to a Gaussian random variable, i.e., the Central Limit Theorem is valid.
引用
收藏
页码:1024 / 1057
页数:33
相关论文
共 28 条
  • [1] Adamczak R(2011)On the Marchenko–Pastur and circular laws for some classes of random matrices with dependent entries Electron. J. Prob. 16 1065-1095
  • [2] Ambainis A(2012)Random tensor theory: extending random matrix theory to random product states Commun. Math. Phys. 310 25-74
  • [3] Harrow AW(2004)CLT for linear spectral statistics of large dimensional sample covariance matrices Ann. Prob. 32 553-605
  • [4] Hastings MB(2008)Large sample covariance matrices without independence structures in columns Stat. Sin. 18 425-1113
  • [5] Bai ZD(2010)Functional CLT for sample covariance matrices Bernoulli 16 1086-402
  • [6] Silverstein JW(2001)Fluctuations de la loi empirique de grandes matrices aleat’oires Ann. Inst. H. Poincart’e Probab. Statist. 37 73-1723
  • [7] Bai ZD(1968)Bounds on the moments of martingales Ann. Math. Statist. 39 1719-80
  • [8] Zhou W(2014)Limit theorems for two classes of random matrices with dependent entries Teor. Veroyatnost. i Primenen 59 61-1840
  • [9] Bai ZD(2009)Central limit theorem for linear eigenvalue statistics of random matrices with independent entries Ann. Prob. 37 1778-483
  • [10] Wang X(1967)The eigenvalue distribution in some ensembles of random matrices Math. USSR Sb. 1 457-29