A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation

被引:0
作者
Andrea Moiola
Ilaria Perugia
机构
[1] University of Reading,Department of Mathematics and Statistics
[2] University of Pavia,Department of Mathematics
[3] University of Vienna,Faculty of Mathematics
来源
Numerische Mathematik | 2018年 / 138卷
关键词
65M60; 65M15; 41A10; 41A25; 35L05;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a space–time Trefftz discontinuous Galerkin method for the first-order transient acoustic wave equations in arbitrary space dimensions, extending the one-dimensional scheme of Kretzschmar et al. (IMA J Numer Anal 36:1599–1635, 2016). Test and trial discrete functions are space–time piecewise polynomial solutions of the wave equations. We prove well-posedness and a priori error bounds in both skeleton-based and mesh-independent norms. The space–time formulation corresponds to an implicit time-stepping scheme, if posed on meshes partitioned in time slabs, or to an explicit scheme, if posed on “tent-pitched” meshes. We describe two Trefftz polynomial discrete spaces, introduce bases for them and prove optimal, high-order h-convergence bounds.
引用
收藏
页码:389 / 435
页数:46
相关论文
共 81 条
  • [1] Abedi R(2006)A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance Comput. Methods Appl. Mech. Eng. 195 3247-3273
  • [2] Petracovici B(1998)Vector potentials in three-dimensional non-smooth domains Math. Methods Appl. Sci. 21 823-864
  • [3] Haber RB(2017)A Trefftz polynomial space-time discontinuous Galerkin method for the second order wave equation SIAM J. Numer. Anal. 55 63-86
  • [4] Amrouche C(1998)Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation SIAM J. Numer. Anal. 35 255-299
  • [5] Bernardi C(2005)Proof of unconditional stability for a single-field discontinuous Galerkin finite element formulation for linear elasto-dynamics Comput. Methods Appl. Mech. Eng. 194 2059-2076
  • [6] Dauge M(2016)Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems Comput. Methods Appl. Math. 16 409-428
  • [7] Girault V(1983)On polynomial approximation in Sobolev spaces SIAM J. Numer. Anal. 20 985-988
  • [8] Banjai L(2015)Transparent boundary conditions for a discontinuous Galerkin Trefftz method Appl. Math. Comput. 267 42-55
  • [9] Georgoulis EH(2015)A Space-Time Discontinuous Galerkin Trefftz Method for Time Dependent Maxwell’s Equations SIAM J. Sci. Comput. 37 B689-B711
  • [10] Lijoka O(2005)Building spacetime meshes over arbitrary spatial domains Eng. Comput. 20 342-353