Contact forces of polyhedral particles in discrete element method

被引:0
作者
Benjamin Nassauer
Meinhard Kuna
机构
[1] TU Bergakademie Freiberg,Institute of Mechanics and Fluid Dynamics
来源
Granular Matter | 2013年 / 15卷
关键词
DEM; Polyhedral particles; Contact forces; Hertz; Damping; Friction;
D O I
暂无
中图分类号
学科分类号
摘要
A general contact force law for arbitrarily shaped bodies is presented. At first an advanced contact force law is derived from the well know Hertz contact law. The obtained formulation of the Hertz contact law can be applied to the contact of arbitrarily shaped bodies. In a second step this contact model is applied to the contacts among polyhedral particles. The results are compared to finite element simulations. The model is extended by terms for damping and friction. The behaviour of the damping and friction model are demonstrated with simple examples. The force law is then implemented in the discrete element method (DEM). The application of this DEM is demonstrated by a simulation of the particle movement in a mixer.
引用
收藏
页码:349 / 355
页数:6
相关论文
共 36 条
  • [1] Carmona H.A.(2008)Fragmentation processes in impact of spheres Phys. Rev. E 77 051302-238
  • [2] Wittel F.K.(2012)Study of quasi two dimensional granular heaps Theor. Appl. Mech. Jpn. 60 225-346
  • [3] Kun F.(2011)Discrete element simulation for polyhedral granular particles Theor. Appl. Mech. Jpn. 59 335-177
  • [4] Herrmann H.J.(2012)Energy-conserving contact interaction models for arbitrarily shaped discrete elements Comput. Methods Appl. Mech. Eng. 205–208 169-240
  • [5] Chen J(2008)Distinct element modelling of cubic particle packing and flow Powder Technol. 186 224-472
  • [6] Matuttis HG(1990)Three-dimensional discrete element method for granular materials Int. J. Numer. Anal. Methods Geomech. 14 451-1239
  • [7] Chen J(2002)Literature survey of contact dynamics modelling Mech. Mach. Theor. 37 1213-231
  • [8] Schinner A(1998)Modeling granular media on the computer Continuum Mech. Thermodyn. 10 189-171
  • [9] Matuttis HG(1881)Über die Berührung fester elastischer Körper J. für die reine und angewandte Math. 92 156-445
  • [10] Feng YT(1975)Coefficient of restitution interpreted as damping in vibroimpact J. Appl. Mech. Trans. ASME 42 Ser E 440-207