On estimates of approximation characteristics of the Besov classes of periodic functions of many variables

被引:2
作者
A. S. Romanyuk
机构
关键词
Periodic Function; Lower Estimate; Trigonometric Polynomial; Approximation Characteristic; Bilinear Approximation;
D O I
10.1007/BF02487348
中图分类号
学科分类号
摘要
We obtain order estimates for some approximate characteristics of the Besov classes Bp,ϑr of periodic functions of many variables.
引用
收藏
页码:1409 / 1422
页数:13
相关论文
共 11 条
[1]  
Romanyuk A. S.(1992)Best trigonometric and bilinear approximations of functions of many variables from the classes Ukr. Mat. Zh. 44 1535-1547
[2]  
Romanyuk A. S.(1993). I Ukr. Mat. Zh. 45 1411-1423
[3]  
Romanyuk A. S.(1995)Best trigonometric and bilinear approximations of functions of many variables from the classes Ukr. Mat. Zh. 47 1097-1111
[4]  
Temlyakov V. N.(1988). II Tr. Mat. Inst. Akad. Nauk SSSR 189 138-168
[5]  
Liflyand I. R.(1986)On the best trigonometric and bilinear approximations of the Besov classes of functions of many variables Mat. Zametki 39 674-683
[6]  
Romanyuk A. S.(1991)Estimates for asymptotic classes of functions with a bounded mixed derivative or difference Ukr. Mat. Zh. 43 1398-1408
[7]  
Temlyakov V. N.(1985)The exact order of the Lebesgue constants of hyperbolic partial sums of multiple Fourier series Izv. Akad. Nauk SSSR, Ser. Mat. 49 986-1030
[8]  
Romanyuk A. S.(1993)Approximation of the Besov classes of periodic functions of many variables in the space Ukr. Mat. Zh. 45 663-675
[9]  
Kashin V. S.(1994)Approximation of periodic functions of many variables by trigonometric polynomials and widths of some classes of functions Mat. Zametki 56 57-86
[10]  
Temlyakov V. N.(1987)On the best trigonometric approximations and the Kolmogorov widths of the Besov classes of functions of many variables Mat. Sb. 132 20-27