On Supersets of Wavelet Sets

被引:0
|
作者
C. Viriyapong
S. Sumetkijakan
机构
[1] Chulalongkorn University,Department of Mathematics, Faculty of Science
来源
关键词
Wavelets; Wavelet sets; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Considering a single dyadic orthonormal wavelet ψ in L2(ℝ), it is still an open problem whether the support of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{\psi}$\end{document} always contains a wavelet set. As far as we know, the only result in this direction is that if the Fourier support of a wavelet function is “small” then it is either a wavelet set or a union of two wavelet sets. Without assuming that a set S is the Fourier support of a wavelet, we obtain some necessary conditions and some sufficient conditions for a “small” set S to contain a wavelet set. The main results, which are in terms of the relationship between two explicitly constructed subsets A and B of S and two subsets T2 and D2 of S intersecting itself exactly twice translationally and dilationally respectively, are (1) if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\cup B\not\subseteq T_{2}\cap D_{2}$\end{document} then S does not contain a wavelet set; and (2) if A∪B⊆T2∩D2 then every wavelet subset of S must be in S∖(A∪B) and if S∖(A∪B) satisfies a “weak” condition then there exists a wavelet subset of S∖(A∪B). In particular, if the set S∖(A∪B) is of the right size then it must be a wavelet set.
引用
收藏
页码:173 / 193
页数:20
相关论文
共 50 条
  • [41] Gabor fields and wavelet sets for the Heisenberg group
    Currey, Bradley
    Mayeli, Azita
    MONATSHEFTE FUR MATHEMATIK, 2011, 162 (02): : 119 - 142
  • [42] On fixed point sets of wavelet induced isomorphisms
    Masood, Dania
    Singh, Pooja
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2014, 12 (06)
  • [43] New sets of wavelet-forming functions
    Alekseev, V. G.
    Sukhodoev, V. A.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2007, 43 (05) : 569 - 573
  • [44] Gabor fields and wavelet sets for the Heisenberg group
    Bradley Currey
    Azita Mayeli
    Monatshefte für Mathematik, 2011, 162 : 119 - 142
  • [45] Rietveld refinement with wavelet compressed data sets
    Smrcok, L
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1999, 214 (08): : 430 - 437
  • [46] New sets of wavelet-forming functions
    V. G. Alekseev
    V. A. Sukhodoev
    Izvestiya, Atmospheric and Oceanic Physics, 2007, 43 : 569 - 573
  • [47] Tight frames and geometric properties of wavelet sets
    John J. Benedetto
    Songkiat Sumetkijakan
    Advances in Computational Mathematics, 2006, 24 : 35 - 56
  • [48] Exceptional sets and wavelet packets orthonormal bases
    Saliani, S
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (05) : 421 - 430
  • [49] Exceptional sets and wavelet packets orthonormal bases
    Sandra Saliani
    Journal of Fourier Analysis and Applications, 1999, 5 : 421 - 430
  • [50] Characterization of wave front sets by wavelet transforms
    Pilipovic, Stevan
    Vuletic, Mirjana
    TOHOKU MATHEMATICAL JOURNAL, 2006, 58 (03) : 369 - 391