On Supersets of Wavelet Sets

被引:0
|
作者
C. Viriyapong
S. Sumetkijakan
机构
[1] Chulalongkorn University,Department of Mathematics, Faculty of Science
来源
关键词
Wavelets; Wavelet sets; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Considering a single dyadic orthonormal wavelet ψ in L2(ℝ), it is still an open problem whether the support of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{\psi}$\end{document} always contains a wavelet set. As far as we know, the only result in this direction is that if the Fourier support of a wavelet function is “small” then it is either a wavelet set or a union of two wavelet sets. Without assuming that a set S is the Fourier support of a wavelet, we obtain some necessary conditions and some sufficient conditions for a “small” set S to contain a wavelet set. The main results, which are in terms of the relationship between two explicitly constructed subsets A and B of S and two subsets T2 and D2 of S intersecting itself exactly twice translationally and dilationally respectively, are (1) if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\cup B\not\subseteq T_{2}\cap D_{2}$\end{document} then S does not contain a wavelet set; and (2) if A∪B⊆T2∩D2 then every wavelet subset of S must be in S∖(A∪B) and if S∖(A∪B) satisfies a “weak” condition then there exists a wavelet subset of S∖(A∪B). In particular, if the set S∖(A∪B) is of the right size then it must be a wavelet set.
引用
收藏
页码:173 / 193
页数:20
相关论文
共 50 条
  • [21] The existence of subspace wavelet sets
    Dai, X
    Diao, Y
    Gu, Q
    Han, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (01) : 83 - 90
  • [22] Simple Wavelet Sets in Rn
    Merrill, Kathy D.
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1295 - 1305
  • [23] ON THE WAVELET ANALYSIS FOR MULTIFRACTAL SETS
    GHEZ, JM
    VAIENTI, S
    JOURNAL OF STATISTICAL PHYSICS, 1989, 57 (1-2) : 415 - 420
  • [24] Frame wavelet sets in Rd
    Dai, X
    Diao, Y
    Gu, Q
    Han, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (01) : 69 - 82
  • [25] Wavelet sets, scaling sets and generalized scaling sets on Vilenkin group
    Mahapatra, Prasadini
    Singh, Divya
    Swain, Arpit Chandan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (12)
  • [26] Coxeter groups and wavelet sets
    Larson, David R.
    Massopust, Peter
    FRAMES AND OPERATOR THEORY IN ANALYSIS AND SIGNAL PROCESSING, 2008, 451 : 187 - +
  • [27] Wavelet sets without groups
    Dobrescu, Mihaela
    Olafsson, Gestur
    INTEGRAL GEOMETRY AND TOMOGRAPHY, 2006, 405 : 27 - +
  • [28] Unitary systems and wavelet sets
    Larson, David R.
    WAVELET ANALYSIS AND APPLICATIONS, 2007, : 143 - +
  • [29] An uncertainty inequality for wavelet sets
    Balan, R
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1998, 5 (01) : 106 - 108
  • [30] Nonlinear Supersets to Droop Control
    Sinha, Mohit
    Dhople, Sairaj
    Johnson, Brian
    Ainsworth, Nathan
    Dorfler, Florian
    2015 IEEE 16TH WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL), 2015,