Design Guidelines for the Noise Optimization of a 0.18 μm CMOS Low-Noise Amplifier

被引:0
|
作者
Ahmed A. Youssef
机构
[1] University of Calgary,Department of Electrical and Computer Engineering
[2] TRLab,Wireless Research Center
来源
Analog Integrated Circuits and Signal Processing | 2006年 / 46卷
关键词
Low-noise amplifier; noise figure; RF MOSFET design; noise optimization;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents the design considerations for the noise optimization of fully integrated tuned low-noise amplifiers (LNA) based on the four noise parameters and two-port noise theory. Specifically, this paper provides the design guidelines for a 0.18 μm CMOS tuned LNA. These guidelines give a useful indication to the design tradeoffs associated with noise figure, power dissipation and gate overdrive voltage for the LNA designed using this technology. As a case study, a 10 GHz LNA has been designed using 0.18 μm CMOS technology for a wireless LAN application. The amplifier has a 2.4 dB noise figure with a −13 dBm third-order input intercept point, while drawing 5 mW from a 1.8 V power supply. The results show that the proposed theoretical contours of constant noise figure which relate the gate overdrive voltage and power dissipation can accurately predict the noise performance of a 0.18 μm CMOS LNA design
引用
收藏
页码:193 / 201
页数:8
相关论文
共 50 条
  • [31] CMOS single-ended-to-differential low-noise amplifier
    Carrasco Carrillo, Tomas
    Gabriel Macias-Montero, Jose
    Osorio Marti, Aitor
    Sieiro Cordoba, Javier
    Maria Lopez-Villegas, Jose
    INTEGRATION-THE VLSI JOURNAL, 2009, 42 (03) : 304 - 311
  • [32] High linearity technique for ultra-wideband low noise amplifier in 0.18 μm CMOS technology
    Galal, A. I. A.
    Pokharel, R.
    Kanaya, H.
    Yoshida, K.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2012, 66 (01) : 12 - 17
  • [33] Design of A 2.4 GHz low noise amplifier in 0.25 μm CMOS technology
    Yang Tao
    IEEE 2007 INTERNATIONAL SYMPOSIUM ON MICROWAVE, ANTENNA, PROPAGATION AND EMC TECHNOLOGIES FOR WIRELESS COMMUNICATIONS, VOLS I AND II, 2007, : 392 - 395
  • [34] Design and Performance Measure of 5.4 GHZ CMOS Low Noise Amplifier using Current Reuse Technique in 0.18μm Technology
    Shankar, S. Udaya
    Dhas, M. Davidson Kamala
    GRAPH ALGORITHMS, HIGH PERFORMANCE IMPLEMENTATIONS AND ITS APPLICATIONS (ICGHIA 2014), 2015, 47 : 135 - 143
  • [35] A noise optimization technique for integrated low-noise amplifiers
    Goo, JS
    Ahn, HT
    Ladwig, DJ
    Yu, ZP
    Lee, TH
    Dutton, RW
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2002, 37 (08) : 994 - 1002
  • [36] CMOS Low-Noise Amplifier for 2.4-GHz Wireless Receivers
    Chalka, Vandana Kumari
    Rizvi, Navaid Zafar
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 4235 - 4239
  • [37] Tunable Balun Low-Noise Amplifier in 65 nm CMOS Technology
    Sturm, Johannes
    Groinig, Marcus
    Xiang, Xinbo
    RADIOENGINEERING, 2014, 23 (01) : 319 - 327
  • [38] A 2.4 GHz ultra low power subthreshold CMOS low-noise amplifier
    Meng, Lim Kok
    Yong, Ng Choon
    Yeo, Kiat Seng
    Anh, Do Manh
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (04) : 743 - 744
  • [39] 5 Gb/s LOW-NOISE AND HIGH BANDWIDTH 0.35 μm CMOS TRANSIMPEDANCE AMPLIFIER
    Hammoudi, Escid
    Mokhtar, Attari
    COMPUTATIONAL INTELLIGENCE IN BUSINESS AND ECONOMICS, 2010, 3 : 649 - 656
  • [40] Transistor Noise Characterization for an SKA Low-Noise Amplifier
    Shaw, R. D.
    Hay, S. G.
    2015 9th European Conference on Antennas and Propagation (EuCAP), 2015,