Studying the Effect of Two Analytical Solutions of Advection-Diffusion Equation on Experimental Data

被引:0
|
作者
Khaled S. M. Essa
Hanaa Mohamed Ahmed Taha
机构
[1] Egyptian Atomic Energy Authority,Department of Mathematics and Theoretical Physics, Nuclear Research Centre
来源
关键词
Advection-diffusion equation; General integrated transport technique; Fourier transform; Square complement method; Laplace transform;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, two proposed analytical model solutions of the steady-state advection-diffusion equation were carried out using the technique of advection diffusion multilayer method (ADMM), variable separation technique, Fourier transform, square complement method, general integrated transport technique (GITT) and Laplace transform. This work considers the wind speed u, crosswind eddy diffusivity ky\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{y}$$\end{document} and vertical eddy diffusivity kz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{z}$$\end{document} as functions of power law in vertical distance "z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z$$\end{document}". This consideration was applied to the two analytical models. The predicted concentrations were calculated for neutral, stable and unstable conditions. The calculated concentrations for unstable conditions were compared with already existing experimental data measured for radioactive iodine-135 (I135) at an Egyptian Atomic Energy Authority test at Inshas. Also, the calculated concentrations for stable and neutral conditions were compared with already existing experimental data on iodine I-131 (I131) released from the research reactor. A comparison of the values of the proposed concentrations and the previous works is included in this article. It was found that the second predicted model was in good agreement with observed data in unstable, stable and neutral conditions compared with the first predicted model.
引用
收藏
页码:2407 / 2418
页数:11
相关论文
共 50 条
  • [31] A NOTE ON FINITE DIFFERENCING OF THE ADVECTION-DIFFUSION EQUATION
    CLANCY, RM
    MONTHLY WEATHER REVIEW, 1981, 109 (08) : 1807 - 1809
  • [32] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (09): : 623 - 626
  • [33] A Meshfree Method for the Fractional Advection-Diffusion Equation
    Lian, Yanping
    Wagner, Gregory J.
    Liu, Wing Kam
    MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 53 - 66
  • [34] A bound on mixing efficiency for the advection-diffusion equation
    Thiffeault, JL
    Doering, CR
    Gibbon, JD
    JOURNAL OF FLUID MECHANICS, 2004, 521 : 105 - 114
  • [35] THE DIRICHLET PROBLEM OF A CONFORMABLE ADVECTION-DIFFUSION EQUATION
    Avci, Derya aeae
    Eroglu, Beyza Billur Iskender
    Ozdemir, Necati
    THERMAL SCIENCE, 2017, 21 (01): : 9 - 18
  • [36] ASYMPTOTIC SOLUTION OF A NONLINEAR ADVECTION-DIFFUSION EQUATION
    De Loubens, R.
    Ramakrishnan, T. S.
    QUARTERLY OF APPLIED MATHEMATICS, 2011, 69 (02) : 389 - 401
  • [37] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    RECHERCHE AEROSPATIALE, 1992, (04): : 73 - 78
  • [38] GENERALIZED SCHUR METHODS FOR THE ADVECTION-DIFFUSION EQUATION
    NATAF, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (05): : 419 - 422
  • [39] Climate modeling with neural advection-diffusion equation
    Choi, Hwangyong
    Choi, Jeongwhan
    Hwang, Jeehyun
    Lee, Kookjin
    Lee, Dongeun
    Park, Noseong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (06) : 2403 - 2427
  • [40] Multiscale computation method for an advection-diffusion equation
    Su, Fang
    Xu, Zhan
    Cui, Jun-Zhi
    Du, Xin-Peng
    Jiang, Hao
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7369 - 7374