Ground state solution to N-Kirchhoff equation with critical exponential growth and without Ambrosetti–Rabinowitz condition

被引:0
作者
Shilpa Gupta
Gaurav Dwivedi
机构
[1] Birla Institute of Technology and Science Pilani,Department of Mathematics
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2024年 / 73卷
关键词
Kirchhoff type problem; Exponential nonlinearity; Variational methods; Critical growth; Ground state solution; 35J20; 35J60; 35D30;
D O I
暂无
中图分类号
学科分类号
摘要
This article is focused on the existence of a ground state solution to the Kirchhoff problem: -k∫Ω|∇u|NdxΔNu=f(x,u)|x|a+λg(x)inΩ,u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -k\left( \int _{\Omega } |\nabla u|^{N}dx \right) \Delta _{N}u &{} =\dfrac{f(x,u)}{|x|^{a}}+\lambda g(x) \ \ \hbox {in} \ \ \Omega , \\ \quad u &{} = 0 \ \ \hbox {on} \ \ \partial \Omega , \end{array}\right. \end{aligned}$$\end{document}where Ω⊆RN(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subseteq {\mathbb {R}}^{N}(N\ge 2)$$\end{document} is a bounded domain with smooth boundary and a∈[0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in [0, N)$$\end{document}. We assume that f satisfies critical exponential growth at infinity but does not satisfy the well-known Ambrosetti–Rabinowitz condition. We prove the existence of a ground state weak solution via mountain pass theorem and Nehari manifold technique.
引用
收藏
页码:45 / 56
页数:11
相关论文
共 39 条
  • [1] Adimurthi A(1990)Existence of positive solutions of the semilinear Dirichlet problems with critical growth for the Ann. Sc. Norm. Super. Pisa 17 393-413
  • [2] Adimurth K(2007)-Laplacian Ann. Polon. Math. 13 585-603
  • [3] Sandeep A(1973)Singular Moser-Trudinger embedding and its applications J. Funct. Anal. 14 349-381
  • [4] Ambrosetti A(1978)Dual variational methods in critical point theory and applications Lombardo Accad. Sci. Lett. Rend. A 112 332-336
  • [5] Rabinowitz PH(1980)An existence criterion for the critical points on unbounded manifolds, Istit Ann. Mat. Pura Appl. 124 161-179
  • [6] Cerami G(2022)On the existence of eigenvalues for a nonlinear boundary value problem Appl. Anal. 30 4619-4627
  • [7] Cerami G(1997)On a nonhomogeneous Kirchhoff-type elliptic problem with critical exponential in dimension two Nonlinear Anal. 193 737-755
  • [8] Chen W(1995)Some remarks on non local elliptic and parabolic problems J. Math. Anal. Appl. 95 607-624
  • [9] Yu F(2014)Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains Nonlinear Anal. 401 706-713
  • [10] Chipot M(2013)Multiplicity of solutions for a class of quasilinear equations with exponential critical growth J. Math. Anal. Appl. 84 23-39