Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions

被引:0
|
作者
Khader M. Hamdia
Mohammad Silani
Xiaoying Zhuang
Pengfei He
Timon Rabczuk
机构
[1] Duy Tan University,Department of Mechanical Engineering
[2] Institute of Research & Development,undefined
[3] Institute of Structural Mechanics,undefined
[4] Bauhaus-Universität Weimar,undefined
[5] Isfahan University of Technology,undefined
[6] Tongji University,undefined
来源
International Journal of Fracture | 2017年 / 206卷
关键词
Polymeric nanoparticle composites; Interphase; Fracture toughness; Computational mechanics; Uncertainty quantification; Sensitivity analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The fracture energy is a substantial material property that measures the ability of materials to resist crack growth. The reinforcement of the epoxy polymers by nanosize fillers improves significantly their toughness. The fracture mechanism of the produced polymeric nanocomposites is influenced by different parameters. This paper presents a methodology for stochastic modelling of the fracture in polymer/particle nanocomposites. For this purpose, we generated a 2D finite element model containing an epoxy matrix and rigid nanoparticles surrounded by an interphase zone. The crack propagation was modelled by the phantom node method. The stochastic model is based on six uncertain parameters: the volume fraction and the diameter of the nanoparticles, Young’s modulus and the maximum allowable principal stress of the epoxy matrix, the interphase zone thickness and its Young’s modulus. Considering the uncertainties in input parameters, a polynomial chaos expansion surrogate model is constructed followed by a sensitivity analysis. The variance in the fracture energy was mostly influenced by the maximum allowable principal stress and Young’s modulus of the epoxy matrix.
引用
收藏
页码:215 / 227
页数:12
相关论文
共 50 条
  • [1] Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions
    Hamdia, Khader M.
    Silani, Mohammad
    Zhuang, Xiaoying
    He, Pengfei
    Rabczuk, Timon
    INTERNATIONAL JOURNAL OF FRACTURE, 2017, 206 (02) : 215 - 227
  • [2] Integrated stochastic analysis of fiber composites manufacturing using adapted polynomial chaos expansions
    Ghauch, Ziad G.
    Aitharaju, Venkat
    Rodgers, William R.
    Pasupuleti, Praveen
    Dereims, Arnaud
    Ghanem, Roger G.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 118 : 179 - 193
  • [3] Seismic fragility analysis using stochastic polynomial chaos expansions
    Zhu, Xujia
    Broccardo, Marco
    Sudret, Bruno
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 72
  • [4] Stochastic fracture mechanics using polynomial chaos
    Beck, Andre Teofilo
    de Santana Gomes, Wellison Jose
    PROBABILISTIC ENGINEERING MECHANICS, 2013, 34 : 26 - 39
  • [5] A POSTERIORI ERROR ANALYSIS OF STOCHASTIC DIFFERENTIAL EQUATIONS USING POLYNOMIAL CHAOS EXPANSIONS
    Butler, T.
    Dawson, C.
    Wildey, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1267 - 1291
  • [6] Simulation of Stochastic Quantum Systems Using Polynomial Chaos Expansions
    Young, Kevin C.
    Grace, Matthew D.
    PHYSICAL REVIEW LETTERS, 2013, 110 (11)
  • [7] STOCHASTIC POLYNOMIAL CHAOS EXPANSIONS TO EMULATE STOCHASTIC SIMULATORS
    Zhu, X.
    Sudret, B.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2023, 13 (02) : 31 - 52
  • [8] Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations
    Jimenez, M. Navarro
    Le Maitre, O. P.
    Knio, O. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 378 - 402
  • [9] Reliability analysis of structures using polynomial chaos expansions
    Zhang M.
    Wang E.
    Liu Y.
    Qi W.
    Wang D.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2022, 62 (08): : 1314 - 1320
  • [10] Global sensitivity analysis using polynomial chaos expansions
    Sudret, Bruno
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2008, 93 (07) : 964 - 979