Spectral Analysis of a Transport Operator Arising in Growing Cell Populations

被引:0
作者
Abdelkader Dehici
Aref Jeribi
Khalid Latrach
机构
[1] Université Du 8 Mai 1945,
[2] Département des Sciences Exactes,undefined
[3] Université de Sfax,undefined
[4] Faculté des Sciences,undefined
[5] Département de Mathématiques,undefined
[6] Université Blaise Pascal (Clermont II),undefined
[7] Département de Mathématiques,undefined
来源
Acta Applicandae Mathematica | 2006年 / 92卷
关键词
transport equation; boundary conditions; positivity in the lattice sense; spectral analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is concerned with the spectral analysis of a transport-like operator derived from a model introduced by Rotenberg describing the growth of a cell population. Each cell of this population is distinguished by its degree of maturity μ and its maturation velocity v. The biological boundaries of μ = 0 and μ = a (a > 0) are fixed and tightly coupled through mitosis. At mitosis daughter cells and mother cells are related by a general reproduction rule which covers all known biological ones. We first discuss in detail the spectrum of the streaming operator for smooth and partly smooth boundary conditions. Next, we discuss the existence and nonexistence of eigenvalues of the transport operator in the half plane {λ ∈ ℂ : Reλ > \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$- \underline{\sigma } \} $\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$- \underline{\sigma } $\end{document}denotes the spectral bound of the streaming operator. In particular, the strict monotonicity of the leading eigenvalue (when it exists) of the transport operator with respect to different parameters of the equation is also considered. We close the paper by describing in detail the various essential spectra of the transport operator for wide classes of collision and boundary operators.
引用
收藏
页码:37 / 62
页数:25
相关论文
共 30 条
  • [1] Anselone P.M.(1968)Collectively compact sets of linear operators Pacific J. Math. 25 417-422
  • [2] Palmer T.W.(1979)Compact operators in Banach lattices Israel J. Math. 34 287-320
  • [3] P. Dodds P.(1960)Fundamental theorems on deficiency numbers, root numbers and indices of linear operators Amer. Math. Soc. Transl. Ser. 2 13 185-264
  • [4] Fremlin D.R.(1967)Normaly solvable operators and ideals associated with them Amer. Math. Soc. Transl. Ser. 2 61 63-84
  • [5] Gohberg I.C.(1969)On the essential spectrum J. Math. Anal. Appl. 25 121-127
  • [6] Krein G.(1958)Perturbation theory for nullity, deficiency and other quantities of linear operators J. Anal. Math. 6 261-322
  • [7] Gohberg I.C.(1993)Compactness properties for linear transport operator with abstract boundary conditions in slab geometry Transport Theory Statist. Phys. 22 39-64
  • [8] A. Markus A.(2001)Compactness results for transport equations and applications Math. Models Methods Appl. Sci. 11 181-1202
  • [9] Feldman I.A.(2001)Fredholm, semi-Fredholm perturbations and essential spectra J. Math. Anal. Appl. 259 277-301
  • [10] Gustafson K.(1999)A nonlinear boundary value problem arising in growing cell population Nonlinear Anal. TMA 36 843-862