Neutral bions in the ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{C} $$\end{document}PN −1 model

被引:0
作者
Tatsuhiro Misumi
Muneto Nitta
Norisuke Sakai
机构
[1] Keio University,Department of Physics, and Research and Education Center for Natural Sciences
关键词
Field Theories in Lower Dimensions; Solitons Monopoles and Instantons; Wilson; ’t Hooft and Polyakov loops; Topological States of Matter;
D O I
10.1007/JHEP06(2014)164
中图分类号
学科分类号
摘要
We study classical configurations in the ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{C} $$\end{document}PN −1 model on ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R} $$\end{document}1 × S1 with twisted boundary conditions. We focus on specific configurations composed of multiple fractionalized-instantons, termed “neutral bions”, which are identified as “perturbative infrared renormalons” by Ünsal and his collaborators. For ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{Z} $$\end{document}N twisted boundary conditions, we consider an explicit ansatz corresponding to topologically trivial configurations containing one fractionalized instanton (ν = 1/N ) and one fractionalized anti-instanton (ν = −1/N ) at large separations, and exhibit the attractive interaction between the instan-ton constituents and how they behave at shorter separations. We show that the bosonic interaction potential between the constituents as a function of both the separation and N is consistent with the standard separated-instanton calculus even from short to large separations, which indicates that the ansatz enables us to study bions and the related physics for a wide range of separations. We also propose different bion ansatze in a certain non-ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{Z} $$\end{document}N twisted boundary condition corresponding to the “split” vacuum for N = 3 and its extensions for N ≥ 3. We find that the interaction potential has qualitatively the same asymptotic behavior and N -dependence as those of bions for ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{Z} $$\end{document}N twisted boundary conditions.
引用
收藏
相关论文
共 50 条