Some aspects of the Floquet theory for the heat equation in a periodic domain

被引:0
作者
Rosenberg, Marcus [1 ]
Taskinen, Jari [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, FI-00014 Helsinki, Finland
关键词
Heat equation; Laplace-Neumann problem; Periodic waveguide; Spectral gap; BOUNDARY-VALUE-PROBLEMS; WAVE-GUIDE; BAND-GAP; SPECTRUM; MEDIA; OPERATOR; BLOCH;
D O I
10.1007/s00028-024-00951-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We treat the linear heat equation in a periodic waveguide Pi subset of R-d, with a regular enough boundary, by using the Floquet transform methods. Applying the Floquet transform F to the equation yields a heat equation with mixed boundary conditions on the periodic cell (omega) over bar of Pi, and we analyse the connection between the solutions of the two problems. The considerations involve a description of the spectral projections onto subspaces H-S is an element of L-2( Pi) corresponding certain spectral components. We also show that the translated Wannier functions form an orthonormal basis in H-S.
引用
收藏
页数:24
相关论文
共 48 条
  • [1] ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1.
    AGMON, S
    DOUGLIS, A
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) : 623 - 727
  • [2] [Anonymous], 2003, Wavesin periodic and random media
  • [3] [Anonymous], 1979, Teor. Funktsii Funktsional. Anal. i Prilozhen
  • [4] Bands in the spectrum of a periodic elastic waveguide
    Bakharev, F. L.
    Taskinen, J.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [5] Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions
    Bakharev, F. L.
    Nazarov, St. A.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (04) : 575 - 592
  • [6] SPECTRAL GAPS FOR THE LINEAR SURFACE WAVE MODEL IN PERIODIC CHANNELS
    Bakharev, F. L.
    Ruotsalainen, K.
    Taskinen, J.
    [J]. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2014, 67 (03) : 343 - 362
  • [7] Birman M.S., 1987, Spectral Theory of Self-Adjoint Operators in Hilbert Space
  • [8] Brezis H, 2011, UNIVERSITEXT, P1
  • [9] Cardone G., Math. Nachr.
  • [10] Cardone G., Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM)