Galois representations, Mumford-Tate groups and good reduction of abelian varieties

被引:0
作者
Frédéric Paugam
机构
[1] Université de Rennes,Institut Mathématique de Rennes
来源
Mathematische Annalen | 2004年 / 329卷
关键词
Abelian Variety; Number Field; Galois Representation; Good Reduction; Analytical Nature;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a number field and A an abelian variety over K. We are interested in the following conjecture of Morita: if the Mumford-Tate group of A does not contain unipotent ℚ-rational points then A has potentially good reduction at any discrete place of K. The Mumford-Tate group is an object of analytical nature whereas having good reduction is an arithmetical notion, linked to the ramification of Galois representations. This conjecture has been proved by Morita for particular abelian varieties with many endomorphisms (called of PEL type). Noot obtained results for abelian varieties without nontrivial endomorphisms (Mumford’s example, not of PEL type). We give new results for abelian varieties not of PEL type.
引用
收藏
页码:119 / 160
页数:41
相关论文
共 19 条
[1]  
Addington C.(1)Groupes p-divisibles, groupes finis et modules filtrés Duke Math. J. 55 65-549
[2]  
Borel J.-P.(1963)Good reduction of abelian varieties Inst. Hautes Études Sci. Publ. Math. 16 5-517
[3]  
Breuil J.(2)undefined Math. Ann. 307 191-undefined
[4]  
Breuil undefined(2000)undefined Ann. of Math. (2) 152 489-undefined
[5]  
Borel undefined(1965)undefined Inst. Hautes Études Sci. Publ. Math., 27 55-undefined
[6]  
Coleman undefined(1)undefined Duke Math. J. 97 171-undefined
[7]  
Coleman undefined(2)undefined Asian J. Math. 4 315-undefined
[8]  
Ferrand undefined(1)undefined Bull. Soc. Math. France 126 1-undefined
[9]  
Fontaine undefined(1994)undefined Astérisque 223 59-undefined
[10]  
Fontaine undefined(1994)undefined Astérisque 223 113-undefined