Nonmonotone smoothing inexact newton method for the nonlinear complementarity problem

被引:2
|
作者
Liu R. [1 ]
Dong L. [2 ]
机构
[1] Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing
[2] College of Mathematics and Information Science, Xinyang Normal University, Xinyang
来源
Liu, Ruijuan (ruijuanliu83@163.com) | 1600年 / Springer Verlag卷 / 51期
关键词
Fischer–Burmeister smoothing function; Nonlinear complementarity problem; Nonmonotone line search; Smoothing inexact newton method;
D O I
10.1007/s12190-015-0925-3
中图分类号
学科分类号
摘要
Smoothing Newton methods have been successfully applied to solve the nonlinear complementarity problem (NCP). In this paper, we first study some properties of the generalized Fischer–Burmeister smoothing function. Based on this function, we then design a smoothing inexact Newton method for the NCP. At each iteration, a system of linear equations is solved only inexactly.Moreover, our method uses a nonmonotone line search technique which is much simpler than existing nonmonotone line searches used in smoothing Newton methods. Under suitable assumptions, we prove that the proposed method is globally and locally superlinearly convergent. Some numerical results are also reported. © Korean Society for Computational and Applied Mathematics 2015.
引用
收藏
页码:659 / 674
页数:15
相关论文
共 50 条
  • [21] A nonmonotone inexact smoothing Newton-type method for P0-NCP based on a parametric complementarity function
    Fang, Liang
    Tang, Jingyong
    Hu, Yunhong
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (04) : 303 - 316
  • [22] A non-monotone inexact regularized smoothing Newton method for solving nonlinear complementarity problems
    Zhu, Jianguang
    Hao, Binbin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (16) : 3483 - 3495
  • [23] A Smoothing Newton method for Nonlinear Complementarity Problems
    Feng, Ning
    Tian, Zhi-yuan
    Qu, Xin-lei
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1090 - 1093
  • [25] A smoothing Newton method for nonlinear complementarity problems
    Tang, Jingyong
    Dong, Li
    Zhou, Jinchuan
    Fang, Liang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 107 - 118
  • [26] A nonmonotone semismooth inexact Newton method
    Bonettini, Silvia
    Tinti, Federica
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04): : 637 - 657
  • [27] Smoothing Newton Algorithm for Nonlinear Complementarity Problem with a PFunction
    刘丹红
    黄涛
    王萍
    Transactions of Tianjin University, 2007, (05) : 379 - 386
  • [28] The convergence of a smoothing damped Gauss-Newton method for nonlinear complementarity problem
    Ma, Changfeng
    Jiang, Lihua
    Wang, Desheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2072 - 2087
  • [29] INEXACT NEWTON METHOD TO SOLVE NONLINEAR IMPLICIT COMPLEMENTARITY PROBLEMS
    Kalashnykova, Nataliya I.
    Kalashnikov, Vyacheslav V.
    Arevalo Franco, Aaron
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (02): : 817 - 825
  • [30] A smoothing Newton method for general nonlinear complementarity problems
    Qi, HD
    Liao, LZ
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 17 (2-3) : 231 - 253