Weighted exponential inequality for differentially subordinate martingales

被引:0
作者
Michał Brzozowski
机构
[1] University of Warsaw,Department of Mathematics, Informatics and Mechanics
来源
Archiv der Mathematik | 2021年 / 116卷
关键词
Martingale; Weight; Burkholder’s function; 60G44;
D O I
暂无
中图分类号
学科分类号
摘要
The paper contains a study of weighted exponential inequalities for differentially subordinate martingales, under the assumption that the underlying weight satisfies Muckenhoupt’s condition A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}. The proof exploits certain functions enjoying appropriate size conditions and concavity. The martingales are adapted, uniformly integrable, and càdlàg - we do not assume any path-continuity restrictions. Because of this generality, we need to handle jump parts of processes which forces us to construct a Bellman function satisfying a stronger condition than local concavity. As a corollary, we will establish some new weighted Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimates for differential subordinates of bounded martingales.
引用
收藏
页码:707 / 720
页数:13
相关论文
共 16 条
[1]  
Bañuelos R(2018)Sharp weighted Trans. Amer. Math. Soc. 370 2391-2422
[2]  
Osękowski A(2018) inequalities for square functions Proc. Amer. Math. Soc. 146 2277-2281
[3]  
Bañuelos R(1984)A weighted maximal inequality for differentially subordinate martingales Ann. Probab. 12 647-702
[4]  
Osękowski A(2019)Boundary value problems and sharp inequalities for martingale transforms Ann. Probab. 47 896-925
[5]  
Burkholder DL(1977)Differential subordination under change of law Tohoku Math. J. 29 115-124
[6]  
Domelevo K(2017)Weighted norm inequalities for martingales Isreal J. Math. 217 181-195
[7]  
Petermichl S(2017)An elementary proof of the Bull. Pol. Acad. Sci. Math. 65 165-175
[8]  
Izumisawa M(2015) bound Adv. Math. 285 1155-1188
[9]  
Kazamaki N(1995)Weighted weak-type inequality for martingales Ann. Probab. 23 522-551
[10]  
Lacey MT(2000)Weighted martingale multipliers in the non-homogeneous setting and outer measure spaces Math. Res. Lett. 7 1-12