Infinitely many solutions for quasilinear Schrödinger systems with finite and sign-changing potentials

被引:0
作者
Yuxia Guo
Jianjun Nie
机构
[1] Tsinghua University,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2016年 / 67卷
关键词
Quasilinear systems; Infinitely many solutions; Sign-changing potentials; 35J62; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following quasilinear Schrödinger system in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} with N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N\geq3}$$\end{document}: P∑i,j=1NDj(aij(u)Diu)-12∑i,j=1NDsaij(u)DiuDju-A(x)u+Fu(u,v)=0∑i,j=1NDj(aij(v)Div)-12∑i,j=1NDsaij(v)DivDjv-B(x)v+Fv(u,v)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{l}\sum_{i,j=1}^{N}D_j(a_{ij}(u)D_i u)-\frac{1}{2} \sum_{i,j=1}^{N}D_s a_{ij}(u) D_i u D_j u-A(x) u+F_u(u,v)=0 \\ \sum_{i,j=1}^{N}D_j(a_{ij}(v)D_iv)-\frac{1}{2} \sum_{i,j=1}^{N}D_s a_{ij}(v) D_i v D_j v-B(x)v+F_v(u,v)=0,\end{array} \right.$$\end{document}where Di=∂∂xi,Dsaij(s)=ddsaij(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_i=\frac{\partial}{\partial x_i},\ \ D_s a_{ij}(s)=\frac{d}{ds}a_{ij}(s)}$$\end{document}, F(u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F(u,v)}$$\end{document} is the coupling term, A(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A(x)}$$\end{document} and B(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B(x)}$$\end{document} are finite and sign-changing potential functions. Using an approximation scheme and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q}$$\end{document}-Laplacian regularization, we prove the existence of infinitely many solutions for system (P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(P)}$$\end{document}.
引用
收藏
相关论文
共 71 条
  • [1] Ambrosetti A.(2003)Positive solutions to a class of quasilinear elliptic equations on Discrete Contin. Dyn. Syst. 9 55-68
  • [2] Wang Z.(2003)Electrons on hexagonal lattices and applications to nanotubes Phys. Rev. B Condens. Matter 68 184-302
  • [3] Hartmann B.(2009)Multiplicity of positive solutions for a class of quasilinear problems Adv. Differ. Equ. 14 911-942
  • [4] Zakrzewski W.(2004)The Cauchy problem for quasilinear Schrödinger equations Invent. Math. 158 343-388
  • [5] Alves C.(2010)Quasilinear asymptotically periodic Schrödinger equations with critical growth Calc. Var. Partial Differ. Equ. 39 1-33
  • [6] Figueiredo G.(2009)Quasilinear asymptotically periodic elliptic equations with critical growth Nonlinear Anal. 71 2890-2905
  • [7] Severo U.(2005)Infinitely many bound states solutions for some nonlinear scalar field equations Calc. Var. Partial Differ. Equ. 23 139-168
  • [8] Kenig C.(1999)Nash-Moser methods for the solution of quasilinear Schrödinger equations Commun. Partial Differ. Equ. 24 1399-1418
  • [9] Ponce G.(2014)Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials J. Math. Anal. Appl. 416 924-946
  • [10] Vega L.(2010)Soliton solutions for quasilinear Schrödinger equations with critical growth J. Differ. Equ. 248 722-744