Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg-Landau equation

被引:0
作者
Akbar Mohebbi
机构
[1] University of Kashan,Department of Applied Mathematics, Faculty of Mathematical Science
来源
The European Physical Journal Plus | / 133卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we propose two fast and accurate numerical methods for the solution of multidimensional space fractional Ginzburg-Landau equation (FGLE). In the presented methods, to avoid solving a nonlinear system of algebraic equations and to increase the accuracy and efficiency of method, we split the complex problem into simpler sub-problems using the split-step idea. For a homogeneous FGLE, we propose a method which has fourth-order of accuracy in time component and spectral accuracy in space variable and for nonhomogeneous one, we introduce another scheme based on the Crank-Nicolson approach which has second-order of accuracy in time variable. Due to using the Fourier spectral method for fractional Laplacian operator, the resulting schemes are fully diagonal and easy to code. Numerical results are reported in terms of accuracy, computational order and CPU time to demonstrate the accuracy and efficiency of the proposed methods and to compare the results with the analytical solutions. The results show that the present methods are accurate and require low CPU time. It is illustrated that the numerical results are in good agreement with the theoretical ones.
引用
收藏
相关论文
共 53 条
[1]  
Aranson I.S.(2002)undefined Rev. Mod. Phys. 74 99-undefined
[2]  
Kramer L.(1950)undefined J. Exp. Theor. Phys. 20 1064-undefined
[3]  
Ginzburg V.L.(2015)undefined Comput. Phys. Commun. 197 43-undefined
[4]  
Landau L.D.(2012)undefined Comput. Model. Eng. Sci. 84 333-undefined
[5]  
Shokri A.(2006)undefined Appl. Math. Lett. 19 1007-undefined
[6]  
Afshari F.(2017)undefined J. Comput. Phys. 338 527-undefined
[7]  
Shokri A.(2015)undefined J. Comput. Phys. 299 526-undefined
[8]  
Dehghan M.(2005)undefined Phys. A 354 249-undefined
[9]  
Wazwaz A.M.(2006)undefined Chaos 16 023110-undefined
[10]  
Khosravian-Arab H.(2016)undefined J. Comput. Phys. 312 31-undefined