Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion

被引:0
|
作者
Anna S. Bodrova
Aleksei V. Chechkin
Andrey G. Cherstvy
Hadiseh Safdari
Igor M. Sokolov
Ralf Metzler
机构
[1] Institut für Physik,Department of Physics & Astronomy
[2] Humboldt-Universität zu Berlin,Department of Physics
[3] Faculty of Physics,undefined
[4] M.V.Lomonosov Moscow State University,undefined
[5] Akhiezer Institute for Theoretical Physics,undefined
[6] Kharkov Institute of Physics and Technology,undefined
[7] Institute of Physics and Astronomy,undefined
[8] University of Potsdam,undefined
[9] University of Padova,undefined
[10] Shahid Beheshti University,undefined
[11] G.C.,undefined
[12] Evin,undefined
来源
Scientific Reports | / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
引用
收藏
相关论文
共 50 条
  • [31] Brownian motion and beyond: first-passage, power spectrum, non-Gaussianity, and anomalous diffusion
    Metzler, Ralf
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (11):
  • [32] Anomalous diffusion in view of Einstein's 1905 theory of Brownian motion
    Abe, S
    Thurner, S
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) : 403 - 407
  • [33] CORRELATION-EFFECTS, GENERALIZED BROWNIAN-MOTION AND ANOMALOUS DIFFUSION
    WANG, KG
    DONG, LK
    WU, XF
    ZHU, FW
    KO, T
    PHYSICA A, 1994, 203 (01): : 53 - 60
  • [34] On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion
    Soon Hoe Lim
    Jan Wehr
    Aniello Lampo
    Miguel Ángel García-March
    Maciej Lewenstein
    Journal of Statistical Physics, 2018, 170 : 351 - 377
  • [35] On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion
    Lim, Soon Hoe
    Wehr, Jan
    Lampo, Aniello
    Angel Garcia-March, Miguel
    Lewenstein, Maciej
    JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (02) : 351 - 377
  • [36] Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation
    Safdari, Hadiseh
    Cherstvy, Andrey G.
    Chechkin, Aleksei V.
    Bodrova, Anna
    Metzler, Ralf
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [37] Brownian Motion in Periodic Potentials: Anomalous Diffusion Induced by Symmetry and Ergodicity Breaking
    Jakub, Spiechowicz
    Luczka, Jerzy
    6TH WARSAW SCHOOL OF STATISTICAL PHYSICS, 2017, : 113 - 113
  • [38] Non-Markovian weak coupling limit of quantum Brownian motion
    S. Maniscalco
    J. Piilo
    K.-A. Suominen
    The European Physical Journal D, 2009, 55 : 181 - 187
  • [39] Non-Markovian weak coupling limit of quantum Brownian motion
    Maniscalco, S.
    Piilo, J.
    Suominen, K. -A.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 55 (01): : 181 - 187
  • [40] Nonequilibrium Phase Transition to Anomalous Diffusion and Transport in a Basic Model of Nonlinear Brownian Motion
    Goychuk, Igor
    Poeschel, Thorsten
    PHYSICAL REVIEW LETTERS, 2021, 127 (11)