Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion

被引:0
|
作者
Anna S. Bodrova
Aleksei V. Chechkin
Andrey G. Cherstvy
Hadiseh Safdari
Igor M. Sokolov
Ralf Metzler
机构
[1] Institut für Physik,Department of Physics & Astronomy
[2] Humboldt-Universität zu Berlin,Department of Physics
[3] Faculty of Physics,undefined
[4] M.V.Lomonosov Moscow State University,undefined
[5] Akhiezer Institute for Theoretical Physics,undefined
[6] Kharkov Institute of Physics and Technology,undefined
[7] Institute of Physics and Astronomy,undefined
[8] University of Potsdam,undefined
[9] University of Padova,undefined
[10] Shahid Beheshti University,undefined
[11] G.C.,undefined
[12] Evin,undefined
来源
Scientific Reports | / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
引用
收藏
相关论文
共 50 条
  • [21] Anomalous diffusion: fractional Brownian motion vs fractional Ito motion
    Eliazar, Iddo
    Kachman, Tal
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (11)
  • [22] Diffusion in a tilted periodic potential. Specific properties of motion in the underdamped limit
    Shushin, A. I.
    CHEMICAL PHYSICS, 2010, 370 (1-3) : 244 - 252
  • [23] Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models
    Wang, Wei
    Metzler, Ralf
    Cherstvy, Andrey G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (31) : 18482 - 18504
  • [24] Brownian motion in shear flow: Direct observation of anomalous diffusion
    Orihara, Hiroshi
    Takikawa, Yoshinori
    PHYSICAL REVIEW E, 2011, 84 (06):
  • [25] Fractional Brownian motion and anomalous diffusion in vibrated granular materials
    Sellerio, Alessandro L.
    Mari, Daniele
    Gremaud, Gerard
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [26] Modelling intermittent anomalous diffusion with switching fractional Brownian motion
    Balcerek, Michal
    Wylomanska, Agnieszka
    Burnecki, Krzysztof
    Metzler, Ralf
    Krapf, Diego
    NEW JOURNAL OF PHYSICS, 2023, 25 (10):
  • [27] Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks
    Liang, Yingjie
    Wang, Wei
    Metzler, Ralf
    Cherstvy, Andrey G.
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [28] From diffusion to anomalous diffusion: A century after Einstein's Brownian motion
    Sokolov, IM
    Klafter, J
    CHAOS, 2005, 15 (02)
  • [29] Levy area for the free Brownian motion: existence and non-existence
    Victoir, N
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (01) : 107 - 121
  • [30] Diffusion limit of Levy-Lorentz gas is Brownian motion
    Magdziarz, Marcin
    Szczotka, Wladyslaw
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 60 : 100 - 106