Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion

被引:0
|
作者
Anna S. Bodrova
Aleksei V. Chechkin
Andrey G. Cherstvy
Hadiseh Safdari
Igor M. Sokolov
Ralf Metzler
机构
[1] Institut für Physik,Department of Physics & Astronomy
[2] Humboldt-Universität zu Berlin,Department of Physics
[3] Faculty of Physics,undefined
[4] M.V.Lomonosov Moscow State University,undefined
[5] Akhiezer Institute for Theoretical Physics,undefined
[6] Kharkov Institute of Physics and Technology,undefined
[7] Institute of Physics and Astronomy,undefined
[8] University of Potsdam,undefined
[9] University of Padova,undefined
[10] Shahid Beheshti University,undefined
[11] G.C.,undefined
[12] Evin,undefined
来源
Scientific Reports | / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
引用
收藏
相关论文
共 50 条
  • [1] Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
    Bodrova, Anna S.
    Chechkin, Aleksei V.
    Cherstvy, Andrey G.
    Safdari, Hadiseh
    Sokolov, Igor M.
    Metzler, Ralf
    SCIENTIFIC REPORTS, 2016, 6
  • [2] Scaled Brownian motion with random anomalous diffusion exponent
    Woszczek, Hubert
    Chechkin, Aleksei
    Wylomanska, Agnieszka
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [3] A perfect probe: Resonance of underdamped scaled Brownian motion
    Luo, Yuhui
    Zeng, Chunhua
    Li, Baowen
    EPL, 2022, 137 (02)
  • [4] Anomalous non-Gaussian diffusion of scaled Brownian motion in a quenched disorder environment
    Suleiman, Kheder
    Li, Yongge
    Xu, Yong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (11)
  • [5] Anomalous diffusion of scaled Brownian tracers
    Sevilla, Francisco J.
    Valdes-Gomez, Adriano
    Torres-Carbajal, Alexis
    PHYSICAL REVIEW E, 2024, 110 (01)
  • [6] On the Brownian motion in a double-well potential in the overdamped limit
    Kalmykov, Yu. P.
    Coffey, W. T.
    Titov, S. V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 377 (02) : 412 - 420
  • [7] Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion
    Jeon, Jae-Hyung
    Chechkin, Aleksei V.
    Metzler, Ralf
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (30) : 15811 - 15817
  • [8] Superstatistical approach of the anomalous exponent for scaled Brownian motion
    dos Santos, M. A. F.
    Menon, L.
    Cius, D.
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [9] Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled Brownian motion with diffusing diffusivity dynamics
    Li, Yongge
    Suleiman, Kheder
    Xu, Yong
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [10] Quantum effects in the Brownian motion of a particle in a double well potential in the overdamped limit
    Coffey, William T.
    Kalmykov, Yuri P.
    Titov, Serguey V.
    Cleary, Liam
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (08):